
ENEE 245: Digital Circuits & Systems Lab — Lab 6

Objectives	

The objectives of this laboratory are the following:

• To understand just how powerful are the tools of behavioral Verilog and logic synthesis
• To get a taste of what real test scenarios look like

As mentioned before, Verilog is a powerful language, and writing code that produces hardware makes
design and debugging of that hardware far simpler than using a breadboard. As a result, you will find
that using Verilog makes is easy to design circuits of incredible complexity. Software design of
hardware (i.e., CAD, or computer-aided design) is the only way that modern computer chips could
be built. To try to design and test these things by hand would be nothing short of impossible.
In this lab you will create several extremely large circuits, including a fairly powerful state machine,
using a minimum of Verilog code. The focus will be on the testing and verification processes.

Pre-Lab Preparation	

64-bit ALU Components

Each of your components must be in a separate module, so that you can get separate timing numbers
for each. If all code is in the same module, you will not be able to differentiate between components.
Design a 64-bit adder, using behavioral Verilog. It should produce a 65-bit result, where the 65th bit
represents an overflow scenario.
Design a 64-bit subtractor, using behavioral Verilog. It should produce a 65-bit result, where the
65th bit represents an overflow scenario.
Design a 64-bit ANDer, using behavioral Verilog. It should produce a 64-bit result, representing the
bitwise AND of its two input values.
Design a 64-bit ORer, using behavioral Verilog. It should produce a 64-bit result, representing the
bitwise OR of its two input values.
If done right, these modules should be relatively small; the adder and subtractor in particular can be
written in just a few lines of code.

Linear Feedback Shift Register

Design a 64-bit linear feedback shift register, using behavioral Verilog. This should be clocked on the
rising edge of a clock input. A 64-bit LFSR has taps at bits 64, 63, 61, and 60. For instance, here is
an 8-bit Galois LFSR with taps at bits 8, 6, 5, and 4:

���1

Verilog & FPGA Advantages	

ENEE 245: Digital Circuits and Systems Laboratory, Fall 2014	

Lab 6

Table of Linear Feedback Shift Registers

Roy Ward, Tim Molteno⇤

October 26, 2007

Here is a table of maximum-cycle Linear Feedback Shift Register (LFSR)
taps. The bit numbering starts from n . . . 1 with n being the input bit and 1 the
output bit. Figure 1 shows an 8-stage maximum-cycle LFSR. LFSR-2 refers to
two tap LFSRs, LFSR-4 to LFSRs. Blanks indicate no solution exists.

8 7 6 5 4 3 2 1

Figure 1: An 8-stage Galois LFSR with cycle size 255. This LFSR has taps at
positions 8,6,5 and 4.

Table 1: Shift Registers with Cycle Size 2

n�1

n LFSR-2 LFSR-4 n LFSR-2 LFSR-4 n LFSR-2 LFSR-4

2 2, 1 24 24, 23, 21, 20 46 46, 40, 39, 38

3 3, 2 25 25, 22 25, 24, 23, 22 47 47, 42 47, 46, 43, 42

4 4, 3 26 26, 25, 24, 20 48 48, 44, 41, 39

5 5, 3 5, 4, 3, 2 27 27, 26, 25, 22 49 49, 40 49, 45, 44, 43

6 6, 5 6, 5, 3, 2 28 28, 25 28, 27, 24, 22 50 50, 48, 47, 46

7 7, 6 7, 6, 5, 4 29 29, 27 29, 28, 27, 25 51 51, 50, 48, 45

8 8, 6, 5, 4 30 30, 29, 26, 24 52 52, 49 52, 51, 49, 46

9 9, 5 9, 8, 6, 5 31 31, 28 31, 30, 29, 28 53 53, 52, 51, 47

10 10, 7 10, 9, 7, 6 32 32, 30, 26, 25 54 54, 51, 48, 46

11 11, 9 11, 10, 9, 7 33 33, 20 33, 32, 29, 27 55 55, 31 55, 54, 53, 49

12 12, 11, 8, 6 34 34, 31, 30, 26 56 56, 54, 52, 49

13 13, 12, 10, 9 35 35, 33 35, 34, 28, 27 57 57, 50 57, 55, 54, 52

14 14, 13, 11, 9 36 36, 25 36, 35, 29, 28 58 58, 39 58, 57, 53, 52

15 15, 14 15, 14, 13, 11 37 37, 36, 33, 31 59 59, 57, 55, 52

16 16, 14, 13, 11 38 38, 37, 33, 32 60 60, 59 60, 58, 56, 55

17 17, 14 17, 16, 15, 14 39 39, 35 39, 38, 35, 32 61 61, 60, 59, 56

18 18, 11 18, 17, 16, 13 40 40, 37, 36, 35 62 62, 59, 57, 56

19 19, 18, 17, 14 41 41, 38 41, 40, 39, 38 63 63, 62 63, 62, 59, 58

20 20, 17 20, 19, 16, 14 42 42, 40, 37, 35 64 64, 63, 61, 60

21 21, 19 21, 20, 19, 16 43 43, 42, 38, 37 65 65, 47 65, 64, 62, 61

22 22, 21 22, 19, 18, 17 44 44, 42, 39, 38 66 66, 60, 58, 57

23 23, 18 23, 22, 20, 18 45 45, 44, 42, 41 67 67, 66, 65, 62

Continued . . .

⇤Department of Physics, University of Otago, Box 56, Dunedin, New Zealand

1

ENEE 245: Digital Circuits & Systems Lab — Lab 6

For example, here is Verilog code for a 10-bit LFSR with taps at 10 and 7:
module LFSR10 (dbus, clk, preset, qbus); 
 input [9:0] dbus; 
 input clk; 
 input preset; 
 output [9:0] qbus; 
 reg [9:0] qbus;

 always @ (posedge clk) begin

 if (preset) 
 begin 
 qbus <= dbus; 
 end 
 else 
 begin 
 qbus[9:9] <= qbus[8:8]; 
 qbus[8:8] <= qbus[7:7]; 
 qbus[7:7] <= qbus[6:6] ^ qbus[9:9]; 
 qbus[6:6] <= qbus[5:5]; 
 qbus[5:5] <= qbus[4:4]; 
 qbus[4:4] <= qbus[3:3]; 
 qbus[3:3] <= qbus[2:2]; 
 qbus[2:2] <= qbus[1:1]; 
 qbus[1:1] <= qbus[0:0]; 
 qbus[0:0] <= qbus[9:9]; 
 end

 end 
endmodule

Note that the all-zeroes state for the shift register is not allowed (it will cycle forever), so be sure that
your initialization mechanism sets it to some non-zero value.

Test Harness

Design a test harness using your LFSR to drive different sets of inputs to your ALU components and
verify that, for each input set, each ALU component produces the correct output. On every cycle,
transfer the contents of the LFSR to a 64-bit register. Use these two values as your test inputs. Test
your circuits on the first 100,000 input values. Note that, in an industrial setting, you would want to
test every possible combination of inputs if at all possible.
Simulate your code and bring a pre-lab write-up showing the code and simulation results.
Your ALU components and LFSR should be synthesizable, but the test harness that compares the
output and verifies its correctness should be in a separate file that will not be synthesized and put
onto the FPGA.

Simple Performance Analysis

Use the design tools to extract the expected latency for each component. What is the fastest clock
speed you should expect to be able to achieve?

In-Lab Procedure	

Bring flash drives to store your data.
Ask the TA questions regarding any procedures about which you are uncertain.
Complete the following tasks:

• Program your system onto the FPGA board.

• Connect the FPGA to the break-out board.
• Run the system and use the DLA to observe the bottom 4 bits of the various components.

Save the DLA’s output for your post-lab report.

���2

ENEE 245: Digital Circuits & Systems Lab — Lab 6

• Look at the detailed RTL schematics produced by the software; save it for your post-lab
report.

• Look at the timing report that gives the pin-to-pin delays for input/output combinations of
every pin. Save these reports and tables for your post-lab report.

Post-Lab Report	

Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs
through your pre-lab simulations and note any differences between what you simulated and how the
circuits behaved in the lab.
Regarding the RTL schematics produced by the software—how did the design software synthesize
your code? Where did it choose poorly, and how could it have done better? Could you have better
specified your design to get more efficient results?
Regarding the timing report that gives the pin-to-pin delays for input/output combinations of every
pin—what does the design software say for the timing? How fast is each component?

���3

