
ENEE 245: Digital Circuits & Systems Lab — Lab 8

Objectives
The objectives of this laboratory are the following:

• To learn how to instantiate the block RAMs offered in FPGAs
• To start learning about high-speed techniques of DDR signaling using source-synchronous

clocking of data
In this lab you will extend your simple controller from the previous lab to send out three different
commands: Reset, Read, and Write. The important things will be keeping track of where in the
sequence of operations your controller is, and reading data on and off the data bus, into and out of
an internal data array. This array will be implemented by the built-in memory blocks provided in
modern FPGAs: the block RAMs.

Flash Command Interface

ONFI-compliant NAND flash chips have the following interface and internals: 

The ONFI 4.0 NAND flash interface uses these pins in the following way:

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture F"

Bruce Jacob"

University of Crete

SLIDE �3

PDF: 09005aef8331b189 / Source: 09005aef8331b1c4 Micron Technology, Inc., reserves the right to change products or speci f ications without notice .
32gb_nand_mlc_l63a__2.fm - Rev. A 12/08 EN 13 ©2008 Micron Technology, Inc. A ll rights reserved .

 32Gb, 64Gb, 128Gb: NAND Flash
Architecture

Micron Confidential and Proprietary Advance

Architecture
These devices use NAND Flash electrical and command interfaces. Data, commands,
and addresses are multiplexed onto the same pins and received by I/O control circuits.
This provides a memory device with a low pin count. The commands received at the I/O
control circuits are latched by a command register and are transferred to control logic
circuits for generating internal signals to control device operations. The addresses are
latched by an address register and sent to a row decoder or a column decoder to select a
row address or a column address, respectively.

The data is transferred to or from the NAND Flash memory array, byte by byte (x8),
through a data register and a cache register. The cache register is closest to the I/O
control circuits and acts as a data buffer for I/O data, whereas the data register is closest
to the memory array and acts as a data buffer for NAND Flash memory array operation.

The NAND Flash memory array is programmed and read in page-based operations; it is
erased in block-based operations. During normal page operations, the data and cache
registers are tied together and act as a single register. During cache operations, the data
and cache registers operate independently to increase data throughput.

These devices also have a status register that reports the status of device operations.

Addressing
NAND Flash devices do not contain dedicated address pins. Addresses are loaded using
a 5-cycle sequence as shown in Tables 3 and 4, on pages 15 and 16. See Figure 7 on
page 14 for additional memory mapping and addressing details.

Figure 6: NAND Flash Functional Block Diagram

Address register

Data register

Cache register

Status register

Command register

CE#

Vcc Vss

CLE
ALE

WE#

RE#
WP#

I/Ox

Control
logic

I/O
control

R/B#

Ro
w

 d
ec

od
e

Column decode

NAND Flash
array

(2 planes)

Recall general device organization

���1

Memories and I/O — DDR Signaling
ENEE 245: Digital Circuits and Systems Laboratory, Fall 2014
Lab 8

174

Figure 76 NV-DDR2 and NV-DDR3 data interface command description

NOTE: When the bus state is not a data input or data output cycle, if ALE, CLE and CE_n are all low (i.e. Idle state) then DQS (DQS_t) shall be
held high by the host to prevent the device from enabling ODT. If ODT is disabled, then DQS is a don’t care during Idle states..

WE_n

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

RE_n

tCCS

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

ENEE 245: Digital Circuits & Systems Lab — Lab 8

This is the latest DDR interface, NV-DDR2/3. The CLK signal at the top is not used in the interface
but is shown so you understand that the controller might very well use a clock that is much faster
than the interface between the controller and the flash device. In fact, this example shows a clock
that is four times faster than most of the signals, and twice as fast as the DDR input/output data.
This is how you should build your controller simply because it is the easiest way to do it.
In this lab, we will implement a subset of these signals. First, we will redefine the 8-bit DQ bus in
flash to use only 2 bits, to reduce the complexity of your implementation and to simplify your
testing process when hooking the DLA to your board.

Your design will export the following I/O pins to the world:  
DQ bus 2-bit I/O — SDR commands & addresses, DDR data  
CE# Chip enable, active low 
CLE Command-latch enable 
ALE Address-latch enable  
WE# Write enable, active low (used as command/address strobe) 
DQS Read enable, active low

These commands take the following forms. In this lab, you will be emulating their timing, but you
will be using different command-code numbers, because you will use a 2-bit data bus for simplicity.
Implement the following, where the 00b. 01b, 10b, and 11b numbers represent the binary command
values that you are to put out onto the bus:

Reset Command 

Page Program — Note that Page Program has two command cycles, during which the
controller sends the values 0b01 (indicating to prepare for a Program command) and 0b10
(indicating Do Command). The CE, CLE, ALE, and WE signals need to be operated
appropriately; they are simply not shown for the sake of simplicity. There will be 1024 data
transfers from the controller to the device: 1K pulses (D0 .. D1023), so a total of 2Kbits. 

175

5.3. Reset Definition
The Reset function puts the target in its default power-up state and if issued when configured to
NV-DDR or NV-DDR2 interface places the target in the SDR data interface. The R/B_n value is
unknown when Reset is issued; R/B_n is guaranteed to be low tWB after the Reset is issued.

Note that some feature settings are retained across Reset commands (as specified in section
5.30). As part of the Reset command, all LUNs are also reset. The command may be executed
with the target in any state, except during power-on when Reset shall not be issued until R/B_n is
set to one. Figure 77 defines the Reset behavior and timings.

If issued when configured in the NV-DDR3 data interface, the target shall remain in the NV-DDR3
data interface following this command.

Figure 77 Reset timing diagram

5.4. Synchronous Reset Definition
The Synchronous Reset command resets the target and all LUNs. The command may be
executed with the target in any state. Figure 78 defines the Synchronous Reset behavior and
timings. The R/B_n value is unknown when Synchronous Reset is issued; R/B_n is guaranteed
to be low tWB after the Synchronous Reset is issued.

This command shall be supported by devices that support the NV-DDR, NV-DDR2, or NV-DDR3
data interfaces. This command is only accepted when using the NV-DDR, NV-DDR2, or NV-
DDR3 data interface. The host should not issue this command when the device is configured to

WE_n

CLE

ALE

RE_n

IOx

DQS

FFh

R/B_n tRST

tWB

11b

220

Figure 97 Page Program timing

C1-C2 Column address of the starting buffer location to write data to. C1 is the least significant byte.

R1-R3 Row address of the page being programmed. R1 is the least significant byte.

D0-Dn Data bytes/words to be written to the addressed page.

DQx

SR[6]

Cycle Type CMD

80h

tPROG
tWB

ADDR

C1

DIN DIN DIN

D0 D1 ...

ADDR

C2

ADDR

R1

ADDR

R2

ADDR

R3

CMD

10h

DIN

Dn

tADL

01b 10b

���2

ENEE 245: Digital Circuits & Systems Lab — Lab 8

Page Read — Note that Page Read has two command cycles, during which the controller
sends the values 0b00 (indicating to prepare for a Read command) and 0b10 (indicating Do
Command). The CE, CLE, ALE, and WE signals need to be operated appropriately; they are
simply not shown for the sake of simplicity. There will be 1024 data transfers from the device
to the controller: 1K pulses (D0 .. D1023), so a total of 2Kbits. 

On the FPGA board there are four buttons and 8 switches. You will use these as follows:

• You will use the 8 switches to identify address values: your controller will read the address
from the switches, interpreting switches 0–3 to indicate the column address (the “C1” and
“C2” bytes in the various commands), and switches 4–7 to indicate the row address (the
“R1,” “R2,” and “R3” bytes in the various commands). The smaller numbers represent less
significant bits. For the top two most significant bits of the Row Address, i.e. R3, just use
zeroes (0b00).

• You will use the buttons to identify commands: your controller will respond to the press of a
button by reading the address from the switches and issue the appropriate command signals.
➡ Button 1: 0b11 Reset command (command only, no address)
➡ Button 2: 0b01 Page Program command (use switches 0–3 to indicate the column

address and switches 4–7 to indicate the row address)
➡ Button 3: 0b00 Page Read command (use switches 0–3 to indicate the column address  

and switches 4–7 to indicate the row address)
You will use a 2-bit data bus (as opposed to 8-bit), which means that you will use the 2-bit
command codes provided above instead of the real ones in ONFI flash devices, and you will break
the row and column addresses into 2-bit chunks and send those chunks over multiple cycles.
Otherwise, it will resemble fairly closely a real flash interface. You need to implement the following
six signals:

DQ bus 2-bit bidirectional I/O, including commands, addresses, and data  
Commands & addresses are single data rate (SDR), timed by the WE#
strobe; the data is double data rate (DDR), timed by the DQS (DQ Strobe).

DQS DQ Strobe, bidirectional
CE# Chip Enable, active low
CLE Command-Latch Enable
ALE Address-Latch Enable
WE# Write Enable, active low (is effectively the command/address timing strobe)

The I/O and DQS signals are bidirectional (“inout” in Verilog). The rest of the signals are all output
only; the controller drives them, and the device receives them.

214

Figure 93 Read timing

C1-C2 Column address of the page to retrieve. C1 is the least significant byte.

R1-R3 Row address of the page to retrieve. R1 is the least significant byte.

Dn Data bytes read from the addressed page.

DQx

SR[6]

Cycle Type CMD

00h

tR
tWB

ADDR

C1

DOUT DOUT DOUT

D0 D1 D2

ADDR

C2

ADDR

R1

ADDR

R2

ADDR

R3

CMD

30h

tRR

00b 10b

���3

ENEE 245: Digital Circuits & Systems Lab — Lab 8

You should map these six signals (seven wires) as follows in your User Constraints File (the first seven
lines in the FX2 connector set, which implements general I/O):

NET “ceb" LOC = “B4"; # Bank = 0, Pin name = IO_L24N_0, Type = I/O, Sch name = R-IO1

NET "cle" LOC = “A4"; # Bank = 0, Pin name = IO_L24P_0, Type = I/O, Sch name = R-IO2

NET "ale" LOC = “C3”; # Bank = 0, Pin name = IO_L25P_0, Type = I/O, Sch name = R-IO3

NET “web" LOC = “C4"; # Bank = 0, Pin name = IO, Type = I/O, Sch name = R-IO4

NET “dq[0]" LOC = “B6"; # Bank = 0, Pin name = IO_L20P_0, Type = I/O, Sch name = R-IO5

NET "dq[1]" LOC = “D5"; # Bank = 0, Pin name = IO_L23N_0/VREF_0, Type = VREF, Sch name = R-IO6

#NET "dqs" LOC = “C5"; # Bank = 0, Pin name = IO_L23P_0, Type = I/O, Sch name = R-IO7

Block RAM in the FPGA

Your FPGA has quite a few libraries that provide already-created circuits for you to use in your
designs. The library documentation is on the course website. For this lab, you will use the Block
RAM facility, which is extremely powerful. Because we only want to get the main idea and not
necessarily talk to a real flash device, we will just use a narrow bus and a small burst length.
Nonetheless, the general facility that you use and get familiar with as part of this lab is extremely
useful and will become an important tool in your future designs.
We will instantiate the RAMB16_S2 block, which is a 16Kbit RAM that is 2 bits wide, running off
the positive edge of the clock. In general, your FPGA has numerous block RAMs, each up to 2KB in
size, so this really is just a taste of what the FPGA can do. It is instantiated this way:

���
RAMB16_S2 #(

 .INIT(2’b00), // Value of output RAM registers @ startup  
 .SRVAL(2’b00), // Output value upon SSR assertion  
 .WRITE_MODE(“WRITE_FIRST”), // WRITE_FIRST|READ_FIRST|NO_CHANGE

) instance_name (

 .DO(DO), // 2-bit Data Output  
 .ADDR(ADDR), // 13-bit Address Input  
 .CLK(CLK), // Clock  
 .DI(DI), // 2-bit Data Input  
 .EN(EN), // RAM Enable Input  
 .SSR(SSR), // Synchronous Set/Reset Input  
 .WE(WE) // Write Enable Input

);

If you put this into your code, giving it a unique instance name (i.e., replace “instance_name” with
whatever you want to call it), then the synthesis tools will grab one of these from the Xilinx library
and instantiate it onto your FPGA. The format is that the top parenthetical (preceded by a # sign) is

Chapter 3: About Design Elements

RAMB16_S2
Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 2-bit
Port

Introduction
This design element is a dedicated random access memory block with synchronous write capability. The block
RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells Parity Cells
Depth Width Depth Width Address Bus Data Bus Parity Bus
8192 2 - - (12:0) (1:0) -

The enable EN pin controls read, write, and reset. When EN is Low, no data is written and the outputs (DO
and DOP) retain the last state. When EN is High and reset (SSR) is High, DO and DOP are set to SRVAL during
the Low-to-High clock (CLK) transition; if write enable (WE) is High, the memory contents reflect the data at
DI and DIP. When EN is High and WE is Low, the data stored in the RAM address (ADDR) is read during the
Low-to-High clock transition. By default, WRITE_MODE=WRITE_FIRST, when EN and WE are High, the data
on the data inputs (DI and DIP) is loaded into the word selected by the write address (ADDR) during the
Low-to-High clock transition and the data outputs (DO and DOP) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed
by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and
does not use a CLB resource.

Logic Table
Inputs Outputs
GSR EN SSR WE CLK ADDR DI DIP DO DOP RAM Contents

Data RAM Parity RAM
1 X X X X X X X INIT INIT No Change No Change

0 0 X X X X X X No
Change

No
Change

No Change No Change

0 1 1 0 ↑ X X X SRVAL SRVAL No Change No Change

0 1 1 1 ↑ addr data pdata SRVAL SRVAL RAM(addr)
=>data

RAM(addr)
=>pdata

0 1 0 0 ↑ addr X X RAM
(addr)

RAM
(addr)

No Change No Change

0 1 0 1 ↑ addr data pdata No
Change1
RAM

No
Change1
RAM

RAM
(addr)=>data

RAM
(addr)=>pdata

Spartan-3 Libraries Guide for HDL Designs
278 www.xilinx.com UG607 (v 13.1) March 1, 2011

���4

ENEE 245: Digital Circuits & Systems Lab — Lab 8

optional and, if present, represents the initialization values; the bottom parenthetical is not optional
and represents the wire connections to the module.
Remember: The data I/O between controller and memory device will be in 1024-pule increments,
i.e., 1024 x 2 bits in total. Each read/write operation will be this large, no smaller. So your data must
be stored and read out from the large Block RAM, which has enough space to hold all of that data.
So you will be using a 13-bit address input to the Block RAM, in which the top 3 bits will be 0s: an
effective 10-bit address bus, specifying 1024 different data locations.

Should You Desire a Challenge
If you design your chip to use a clock that cycles twice as fast as the DDR input/output, and
therefore four times as fast as the commands and addresses, then it should be relatively
straightforward to make sure all of the signals are synchronized. However, your design will be fairly
complex because each atomic operation (such as sending a single command or address word on the
2-bit bus) will span multiple cycles of the clock. This will require a state machine to keep track of
where you are in the sequence.
You could make your state machine simpler by using a 2x clock instead of a 4x clock, and using
special DDR input/output buffers for the I/O. In other words, you could move data around the
interior of the controller in 4-bit chunks, using 4-bit data busses and the RAMB16_S4 block, which
has 4-bit data ports, instead of the RAMB16_S2 block, which has 2-bit data ports. And you could
use the Xilinx library’s IFDDRRSE and OFDDRRSE registers that can automatically handle the
DDR input/output for you. They are instantiated as follows:

���
IFDDRRSE instance_name (

 .Q0(Q0) // Posedge data output  
 .Q1(Q1) // Negedge data output  
 .C0(C0) // 0 degree clock input  
 .C1(C1) // 180 degree clock input  
 .CE(CE) // Clock enable input  
 .D(D) // Data input (connect directly to top-level port)  
 .R(R) // Synchronous reset input  
 .S(S) // Synchronous preset input

);

Chapter 3: About Design Elements

IFDDRRSE
Primitive: Dual Data Rate Input D Flip-Flop with Synchronous Reset and Set and Clock
Enable

Introduction
This design element is a dual data rate (DDR) input D flip-flop with synchronous reset (R), synchronous set (S),
and clock enable (CE). It consists of one input buffer and two identical flip-flops (FDRSE).

For the C0 input and Q0 output, reset (R) has precedence. The R input, when High, resets the Q0 output Low
during the Low-to-High C0 clock transition. When S is High and R is Low, the Q0 output is set High during the
Low-to-High C0 clock transition. For the C1 input and Q1 output, set (S) has precedence. The R input, when
High, resets the Q1 output Low during the Low-to-High C1 clock transition. When S is High and R is Low, the
Q0 output is set to High during the Low-to-High C1 clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on
conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted
by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

The INIT attribute does not apply to this element.

Logic Table
Inputs Outputs
C0 C1 CE D R S Q0 Q1
↑ X X X 1 0 0 No Change

↑ X X X 0 1 1 No Change

↑ X X X 1 1 0 No Change

X ↑ X X 1 0 No Change 0

X ↑ X X 0 1 No Change 1

X ↑ X X 1 1 No Change 0

X X 0 X 0 0 No Change No Change

↑ X 1 D 0 0 D No Change

X ↑ 1 D 0 0 No Change D

Spartan-3 Libraries Guide for HDL Designs
52 www.xilinx.com UG607 (v 13.1) March 1, 2011

���5

ENEE 245: Digital Circuits & Systems Lab — Lab 8

���
OFDDRRSE instance_name (

 .Q(Q) // Data output (connect directly to top-level port) 
 .C0(C0) // 0 degree clock input  
 .C1(C1) // 180 degree clock input  
 .CE(CE) // Clock enable input  
 .D0(D0) // Posedge data input 
 .D1(D1) // Negedge data input 
 .R(R) // Synchronous reset input  
 .S(S) // Synchronous preset input

);

Pre-Lab Preparation
Design your controller. Your goal is to create timing diagrams like the ones above. Use the Xilinx
design facility to generate waveforms for each command, and bring these as your pre-lab write-up.
On the course website will be found a module for you to instantiate in your test bench and use as a
memory device for testing, so that it can respond to your read request and return data with correct
timing.

In-Lab Procedure
Bring flash drives to store your data.
Ask the TA questions regarding any procedures about which you are uncertain.
Complete the following tasks:

• Program your system onto the FPGA board.

• Connect the FPGA to the break-out board.
• Run the system and use the DLA to observe the 6 bits of the controller output. Save the

DLA’s output for your post-lab report.
• Look at the detailed RTL schematics produced by the software; save it for your post-lab

report.
• Look at the timing report that gives the pin-to-pin delays for input/output combinations of

every pin. Save these reports and tables for your post-lab report.

Post-Lab Report
Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs
through your DLA output and note any differences between what you simulated and how the
circuits behaved in the lab.

Chapter 3: About Design Elements

OFDDRRSE
Primitive: Dual Data Rate Output D Flip-Flop with Synchronous Reset and Set and
Clock Enable

Introduction
This design element is a dual data rate (DDR) output D flip-flop with synchronous reset (R) and set (S) and clock
enable (CE). It consists of one output buffer and one dual data rate flip-flop (FDDRRSE).

On a Low-to-High clock transition (C0 or C1), a High R input resets the Q output Low; a Low R input with a
High S input sets Q High. When both R and S are Low and clock enable is High, data on the D0 input is loaded
into the flip-flop on a Low-to-High C0 clock transition and data on the D1 input is loaded into the flip-flop on a
Low-to-High C1 clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on
conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted
by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

The INIT attribute does not apply to this design element.

Logic Table
Inputs Outputs
C0 C1 CE D0 D1 R S Q
↑ X X X X 1 0 0

↑ X X X X 0 1 1

↑ X X X X 1 1 0

X ↑ X X X 1 0 0

X ↑ X X X 0 1 1

X ↑ X X X 1 1 0

X X 0 X X 0 0 No Change

↑ X 1 D0 X 0 0 D0

X ↑ 1 X D1 0 0 D1

Design Entry Method
Instantiation Yes

Inference Recommended

CORE Generator™ and wizards No

Macro support No

Spartan-3 Libraries Guide for HDL Designs
140 www.xilinx.com UG607 (v 13.1) March 1, 2011

���6

ENEE 245: Digital Circuits & Systems Lab — Lab 8

Regarding the RTL schematics produced by the software—how did the design software synthesize
your code? Where did it choose poorly, and how could it have done better? Could you have better
specified your design to get more efficient results?
Regarding the timing report that gives the pin-to-pin delays for input/output combinations of every
pin—what does the design software say for the timing? How fast is each component? How fast could
you, in theory, run your design?

���7

