
ENEE 245: Digital Circuits & Systems Lab — Lab 9

Objectives
The objectives of this laboratory are the following:

• To learn how to instantiate the block RAMs offered in FPGAs
• To learn how to read and write external data on a bi-directional bus

In this lab you will extend your simple controller from the previous lab to send out three different
commands: Reset, Read, and Write. The important things will be keeping track of where in the
sequence of operations your controller is, and reading data on and off the data bus, into and out of
an internal data array. This array will be implemented by the built-in memory blocks provided in
modern FPGAs: the block RAMs.

Flash Command Interface

ONFI-compliant NAND flash chips have the following interface and internals: 

The ONFI 4.0 NAND flash interface uses these pins in the following way:

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture F"

Bruce Jacob"

University of Crete

SLIDE �3

PDF: 09005aef8331b189 / Source: 09005aef8331b1c4 Micron Technology, Inc., reserves the right to change products or speci f ications without notice .
32gb_nand_mlc_l63a__2.fm - Rev. A 12/08 EN 13 ©2008 Micron Technology, Inc. A ll rights reserved .

 32Gb, 64Gb, 128Gb: NAND Flash
Architecture

Micron Confidential and Proprietary Advance

Architecture
These devices use NAND Flash electrical and command interfaces. Data, commands,
and addresses are multiplexed onto the same pins and received by I/O control circuits.
This provides a memory device with a low pin count. The commands received at the I/O
control circuits are latched by a command register and are transferred to control logic
circuits for generating internal signals to control device operations. The addresses are
latched by an address register and sent to a row decoder or a column decoder to select a
row address or a column address, respectively.

The data is transferred to or from the NAND Flash memory array, byte by byte (x8),
through a data register and a cache register. The cache register is closest to the I/O
control circuits and acts as a data buffer for I/O data, whereas the data register is closest
to the memory array and acts as a data buffer for NAND Flash memory array operation.

The NAND Flash memory array is programmed and read in page-based operations; it is
erased in block-based operations. During normal page operations, the data and cache
registers are tied together and act as a single register. During cache operations, the data
and cache registers operate independently to increase data throughput.

These devices also have a status register that reports the status of device operations.

Addressing
NAND Flash devices do not contain dedicated address pins. Addresses are loaded using
a 5-cycle sequence as shown in Tables 3 and 4, on pages 15 and 16. See Figure 7 on
page 14 for additional memory mapping and addressing details.

Figure 6: NAND Flash Functional Block Diagram

Address register

Data register

Cache register

Status register

Command register

CE#

Vcc Vss

CLE
ALE

WE#

RE#
WP#

I/Ox

Control
logic

I/O
control

R/B#

Ro
w

 d
ec

od
e

Column decode

NAND Flash
array

(2 planes)

Recall general device organization

���1

Memories and I/O — Bidirectional Data
ENEE 245: Digital Circuits and Systems Laboratory, Fall 2014
Lab 9

174

Figure 76 NV-DDR2 and NV-DDR3 data interface command description

NOTE: When the bus state is not a data input or data output cycle, if ALE, CLE and CE_n are all low (i.e. Idle state) then DQS (DQS_t) shall be
held high by the host to prevent the device from enabling ODT. If ODT is disabled, then DQS is a don’t care during Idle states..

WE_n

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

RE_n

tCCS

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

ENEE 245: Digital Circuits & Systems Lab — Lab 9

This is the latest DDR interface, NV-DDR2/3. The CLK signal at the top is not used in the interface
but is shown so you understand that the controller might very well use a clock that is much faster
than the interface between the controller and the flash device. In fact, this example shows a clock
that is four times faster than most of the signals, and twice as fast as the DDR input/output data.
This is how you should build your controller simply because it is the easiest way to do it.
In this lab, we will implement a subset of these signals. First, we will redefine the 8-bit DQ bus that
is used in flash to use only 2 bits. This will reduce the complexity of your implementation and
simplify your testing process when hooking the DLA to your board.
On the FPGA board there are four buttons and 8 switches. You will use these as follows:

• You will use the 8 switches to identify address values: your controller will read the address
from the switches, interpreting switches 0–3 to indicate the column address (the “C1” and
“C2” bytes in the various commands), and switches 4–7 to indicate the row address (the
“R1,” “R2,” and “R3” bytes in the various commands). The smaller numbers represent less
significant bits. For the top two most significant bits of the Row Address, i.e. R3, just use
zeroes (0b00).

• You will use the buttons to identify commands: your controller will respond to the press of a
button by reading the address from the switches and issue the appropriate command signals.
➡ Button 1: 0b11 Reset command (command only, no address)
➡ Button 2: 0b01 Page Program command (use switches 0–3 to indicate the column

address and switches 4–7 to indicate the row address)
➡ Button 3: 0b00 Page Read command (use switches 0–3 to indicate the column address  

and switches 4–7 to indicate the row address)
➡ Button 4: Initialize the device: set all internal registers to the correct starting values and

drive the bi-directional (inout) DQ bus with high-Z.
You will use a 2-bit data bus (as opposed to 8-bit), which means that you will use the 2-bit
command codes provided above instead of the real ones in ONFI flash devices, and you will break
the row and column addresses into 2-bit chunks and send those chunks over multiple cycles.
Otherwise, it will resemble fairly closely a real flash interface. You need to implement the following
six signals:

DQ bus 2-bit bidirectional I/O, including commands, addresses, and data  
Commands & addresses are single data rate (SDR), timed by the WE#
strobe; the data is double data rate (DDR), timed by the DQS (DQ Strobe).

DQS DQ Strobe, bidirectional
CE# Chip Enable, active low
CLE Command-Latch Enable
ALE Address-Latch Enable
WE# Write Enable, active low (is effectively the command/address timing strobe)

These commands take the following forms. In this lab, you will be emulating their timing, but you
will be using different command-code numbers, because you will use a 2-bit data bus for simplicity.
Implement the following, where the 00b. 01b, 10b, and 11b numbers represent the binary command
values that you are to put out onto the bus. The internal CLK signal and example state values are
shown just for your convenience; you need not implement your controller this way—only the timing
of the external signals matters. For each command, there are two variations given, in which the only
difference is whether the internal state machine is run off the rising or falling edge of the clock.

���2

ENEE 245: Digital Circuits & Systems Lab — Lab 9

Reset Command
The timing for the Reset command is given below, in two variations, depending on whether
you want to use the rising or falling edge of the clock to drive your state machine.

Page Program Command
The timing for the Page Program command is given below, in two variations, depending on
whether you want to use the rising or falling edge of the clock to drive your state machine.

Note that Page Program has a lengthy command sequence, as you must send not only the
command (01b) but also four address bursts on the bus, giving the eight total bits, two at a
time, that you read from the 8-bit switch bus. The CE, CLE, ALE, and WE signals need to
be operated appropriately and are given. This command adds the component of data, which
was not part of the Reset command. There will be 1024 data transfers from the controller to
the memory device: 1K pulses (D0 .. D1023), so a total of 2Kbits. It is recommended that

CE#
WE#
ALE
CLE
DQ

DQS

CLK

11b

state RES RES_A IDLE

CE#
WE#
ALE
CLE
DQ

DQS

CLK

11b

state RES RES_A IDLE

���3

PRG_E PRG_B

CE#
WE#
ALE
CLE
DQ

DQS

CLK

01b

state PRG PRG_A

C1 C2 R1 R2

PRG_C PRG_D

D0 D1 … D1022 D1023

DATA_OUTPUT PRG_F PRG_G IDLE

PRG_E PRG_B

CE#
WE#
ALE
CLE
DQ

DQS

CLK

01b

state PRG PRG_A

C1 C2 R1 R2

PRG_C PRG_D

D0 D1 … D1022 D1023

DATA_OUTPUT PRG_F PRG_G IDLE

ENEE 245: Digital Circuits & Systems Lab — Lab 9

you have a separate 10-bit counter that gets initialized when you enter the DATA_OUTPUT
state, and you simply count down to zero; when done, stop transmitting data, drive the DQ
bus and DQS wire with high-Z, and go into the IDLE state. The data is clocked with a
different clocking signal than the command and address pulses. The DQS signal (DQ Strobe)
is sent along with the data. For this lab, we will not do DDR data transfers but will instead
do simple single-ended transmission of data, and the next lab will add a DDR component as
well as an LCD controller so that you can better see what is going on in your design.
Page Read Command
The timing for the Page Read command is given below, in two variations, depending on
whether you want to use the rising or falling edge of the clock to drive your state machine.

Note that Page Read has two command cycles, during which the controller sends the values
0b00 (indicating to prepare for a Read command) and 0b10 (indicating Start Sending Data).
As with the Page Program command, there will be 1024 data transfers from the memory
device to the controller: 1K pulses (D0 .. D1023), so a total of 2Kbits. It is recommended
that you have a separate 10-bit counter that gets initialized when you enter the
DATA_INPUT state, and you simply count down to zero; when done, stop receiving data,
drive the DQ bus and DQS wire with high-Z, and go into the IDLE state. The data is
clocked with a different clocking signal than the command and address pulses and on a Page
Read command, the controller receives the clock, as opposed to sending it. The DQS signal
(DQ Strobe) is received along with the data.

The two-bit I/O bus (the “DQ” bus) and the DQS timing signal are both bidirectional (they are to
be defined as “inout” in your Verilog). This means that the device responsible for driving the signal
changes depending on whether it is a read or write operation (the controller drives the data and
timing signal onto the bus for write operations; the memory device drives the data and timing signal
onto the bus for read operations). Note: in Verilog, when you are not actively driving an “inout”
signal you must explicitly assign it high impedance (‘Z’). The rest of the signals are all output only;
the controller drives them, and the memory device receives them.

���4

RD_E RD_B

00b

RD RD_A

C1 C2 R1 R2

RD_C RD_D

D0 D1 … D1022 D1023

RD_F RD_G IDLE

CE#
WE#
ALE
CLE
DQ

DQS

CLK
state DATA_INPUT

10b

RD_E RD_B

00b

RD RD_A

C1 C2 R1 R2

RD_C RD_D

D0 D1 … D1022 D1023

RD_F RD_G IDLE

CE#
WE#
ALE
CLE
DQ

DQS

CLK
state DATA_INPUT

10b

ENEE 245: Digital Circuits & Systems Lab — Lab 9

You should map these six signals (seven wires) as follows in your User Constraints File (the first seven
lines in the FX2 connector set, which implements general I/O):

NET “ceb" LOC = “B4"; # Bank = 0, Pin name = IO_L24N_0, Type = I/O, Sch name = R-IO1

NET "cle" LOC = “A4"; # Bank = 0, Pin name = IO_L24P_0, Type = I/O, Sch name = R-IO2

NET "ale" LOC = “C3”; # Bank = 0, Pin name = IO_L25P_0, Type = I/O, Sch name = R-IO3

NET “web" LOC = “C4"; # Bank = 0, Pin name = IO, Type = I/O, Sch name = R-IO4

NET “dq[0]" LOC = “B6"; # Bank = 0, Pin name = IO_L20P_0, Type = I/O, Sch name = R-IO5

NET "dq[1]" LOC = “D5"; # Bank = 0, Pin name = IO_L23N_0/VREF_0, Type = VREF, Sch name = R-IO6

#NET "dqs" LOC = “C5"; # Bank = 0, Pin name = IO_L23P_0, Type = I/O, Sch name = R-IO7

Block RAM in the FPGA

Your FPGA has quite a few libraries that provide already-created circuits for you to use in your
designs. The library documentation is on the course website. For this lab, you will use the Block
RAM facility, which is extremely powerful. Because we only want to get the main idea and not
necessarily talk to a real flash device, we will just use a narrow bus and a small burst length.
Nonetheless, the general facility that you use and get familiar with as part of this lab is extremely
useful and will become an important tool in your future designs.
We will instantiate the RAMB16_S2 block, which is a 16Kbit RAM that is 2 bits wide, running off
the positive edge of the clock. In general, your FPGA has numerous block RAMs, each up to 2KB in
size, so this really is just a taste of what the FPGA can do. It is instantiated this way:

���
RAMB16_S2 #(

 .INIT(2’b00), // Value of output RAM registers @ startup  
 .SRVAL(2’b00), // Output value upon SSR assertion  
 .WRITE_MODE(“WRITE_FIRST”), // WRITE_FIRST|READ_FIRST|NO_CHANGE

) instance_name (

 .DO(DO), // 2-bit Data Output  
 .ADDR(ADDR), // 13-bit Address Input  
 .CLK(CLK), // Clock  
 .DI(DI), // 2-bit Data Input  
 .EN(EN), // RAM Enable Input  
 .SSR(SSR), // Synchronous Set/Reset Input  
 .WE(WE) // Write Enable Input

);

If you put this into your code, giving it a unique instance name (i.e., replace “instance_name” with
whatever you want to call it), then the synthesis tools will grab one of these from the Xilinx library
and instantiate it onto your FPGA. The format is that the top parenthetical (preceded by a # sign) is

Chapter 3: About Design Elements

RAMB16_S2
Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 2-bit
Port

Introduction
This design element is a dedicated random access memory block with synchronous write capability. The block
RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells Parity Cells
Depth Width Depth Width Address Bus Data Bus Parity Bus
8192 2 - - (12:0) (1:0) -

The enable EN pin controls read, write, and reset. When EN is Low, no data is written and the outputs (DO
and DOP) retain the last state. When EN is High and reset (SSR) is High, DO and DOP are set to SRVAL during
the Low-to-High clock (CLK) transition; if write enable (WE) is High, the memory contents reflect the data at
DI and DIP. When EN is High and WE is Low, the data stored in the RAM address (ADDR) is read during the
Low-to-High clock transition. By default, WRITE_MODE=WRITE_FIRST, when EN and WE are High, the data
on the data inputs (DI and DIP) is loaded into the word selected by the write address (ADDR) during the
Low-to-High clock transition and the data outputs (DO and DOP) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed
by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and
does not use a CLB resource.

Logic Table
Inputs Outputs
GSR EN SSR WE CLK ADDR DI DIP DO DOP RAM Contents

Data RAM Parity RAM
1 X X X X X X X INIT INIT No Change No Change

0 0 X X X X X X No
Change

No
Change

No Change No Change

0 1 1 0 ↑ X X X SRVAL SRVAL No Change No Change

0 1 1 1 ↑ addr data pdata SRVAL SRVAL RAM(addr)
=>data

RAM(addr)
=>pdata

0 1 0 0 ↑ addr X X RAM
(addr)

RAM
(addr)

No Change No Change

0 1 0 1 ↑ addr data pdata No
Change1
RAM

No
Change1
RAM

RAM
(addr)=>data

RAM
(addr)=>pdata

Spartan-3 Libraries Guide for HDL Designs
278 www.xilinx.com UG607 (v 13.1) March 1, 2011

���5

ENEE 245: Digital Circuits & Systems Lab — Lab 9

optional and, if present, represents the initialization values; the bottom parenthetical is not optional
and represents the wire connections to the module.
Remember: The data I/O between controller and memory device will be in 1024-pule increments,
i.e., 1024 x 2 bits in total. Each read/write operation will be this large, no smaller. So your data must
be stored and read out from the large Block RAM, which has enough space to hold all of that data.
So you will be using a 13-bit address input to the Block RAM, in which the top 3 bits will be 0s: an
effective 10-bit address bus, specifying 1024 different data locations.

Pre-Lab Preparation
Design your controller. Your goal is to create timing diagrams like the ones above. Use the Xilinx
design facility to generate waveforms for each command, and bring these as your pre-lab write-up.
On the course website will be found a module for you to instantiate in your test bench and use as a
memory device for testing, so that it can respond to your read request and return data with correct
timing.

In-Lab Procedure
Bring flash drives to store your data.
Ask the TA questions regarding any procedures about which you are uncertain.
Complete the following tasks:

• Program your system onto the FPGA board.

• Connect the FPGA to the break-out board.
• Run the system and use the DLA to observe the 6 bits of the controller output. Save the

DLA’s output for your post-lab report.
• Look at the detailed RTL schematics produced by the software; save it for your post-lab

report.
• Look at the timing report that gives the pin-to-pin delays for input/output combinations of

every pin. Save these reports and tables for your post-lab report.

Post-Lab Report
Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs
through your DLA output and note any differences between what you simulated and how the
circuits behaved in the lab.
Regarding the RTL schematics produced by the software—how did the design software synthesize
your code? Where did it choose poorly, and how could it have done better? Could you have better
specified your design to get more efficient results?
Regarding the timing report that gives the pin-to-pin delays for input/output combinations of every
pin—what does the design software say for the timing? How fast is each component? How fast could
you, in theory, run your design?

���6

