
ENEE 245: Digital Circuits & Systems Lab — Lab 7

Objectives
The objectives of this laboratory are the following:

• To become familiar with continuous assignments and procedural programming in Verilog

• To design various multiplexer configurations in Verilog

• To implement a 4-bit wide 4:1multiplexer in the Nexys2 FPGA prototyping board

• To implement an analog MUX on breadboard
A multiplexer is a device that selects one of several input signals and forwards the selected input to
the output. Typical multiplexers come in 2:1, 4:1, 8:1, and 16:1 forms. A multiplexer of 2n inputs
has n select lines. A TTL series 8:1 MUX is 74151. It has three select lines S2, S1, S0. Each of the 8
possible combinations of S2, S1, S0 selects In this lab, you will design a several MUXes using
Verilog, on a Nexys2 board (from Digilent), which contains a Spartan 3E FPGA (from Xilinx).

Multiplexers
The MUX is generally shown as follows, as a high-level abstraction:

It selects between multiple input signals, but though the picture above suggests that the chosen signal
is passed from input to output, that depends on the implementation of the MUX. There is a
difference between passing an input signal to the output, and the value of the input signal to the
output.
In general, there are two main MUX designs. The first is a digital MUX—it passes on either “1” or
“0” depending on the logic values given to it; the second is an analog MUX—it passes on the desired
signals themselves. Now that you have been exposed to analog signals as they appear in the digital
world, this should make sense.

 1

Multiplexers — Two Types + Verilog
ENEE 245: Digital Circuits and Systems Laboratory
Lab 7

ENEE 245: Digital Circuits & Systems Lab — Lab 7

Digital MUXes of various flavors

  
AND gates feeding into an n-way OR gate

  
NAND gates feeding into an n-way NAND gate (note the left-most NAND could be a simple inverter)

  
CMOS inverting MUXes (a non-inverting MUX requires an additional inverter at the output)

Analog MUX using transmission gates

  
CNT and CNTB are the select/select-bar signals to enable only one transmission gate

S
D0 D1

Y

S

D0

D1
Y

0

1
S

Y

D0
D1

S

S

S

S

S

S

U.S. Patent Nov. 16, 2004 Sheet 2 6f 13 US 6,819,602 B2

FIG. 3A

212
0088 '

CNTB VREF V

T 211
r _ CNT

FIG. 38

(INT 7 {>6 * CNTB

FIG. 4

CNT/CNTB

[15
MODE

REC'STER SET

A
COMMAND ADD

 2

ENEE 245: Digital Circuits & Systems Lab — Lab 7

An even cheaper analog MUX using simple pass transistors

These are all MUXes. The “digital” ones on the top imply a CMOS implementation, in which case
each AND/NAND/OR/NOR would be at least four transistors (the non-inverting ones would
require six), and each inverter would be two transistors. So the top design would require 20
transistors, and the second one would require 16 (could be reduced to 14 if an inverter were used on
the select signal). The third one down, the inverting implementation, reduces the transistor count to
8, or 10 if a non-inverting MUX is desired.
So it should be extremely clear why the analog ones are the most commonly used in industrial
designs: they are much smaller—the transmission-gate implementation requires only six transistors
(which includes an inverter to get the CNTB signal), and the last implementation only requires two.
Note that the analog implementations are bi-directional—the selected signal can pass both ways, as
the pass transistors are all agnostic about signal direction, whereas the information is strictly one-way
in CMOS designs.

Verilog Implementation
The most important thing in writing behavioral Verilog is to ensure that what you want is what the
software actually delivers to you. This is called “writing synthesizable code,” and when generating
MUXes, the thing to keep in mind is that you ensure every possible value for the select signal is
accounted for. If you fail to do this, the synthesis software will create odd little state machines to try
to account for any values you neglected to mention.
The following are all reasonable implementations:

wire in0, in1, sel, out;  
assign out = (~sel & in0) | (sel & in1);

wire in0, in1, sel, out;  
assign out = (sel) ? in1 : in0;

wire in0, in1, sel, out;  
wire [1:0] d = {in0, in1};  
assign out = d[sel];

wire in0, in1, sel, out;  
assign out = (sel==1’b0) ? in0 : 1’bz,  

out = (sel==1’b1) ? in1 : 1’bz;

The main issue is when you go to larger numbers of inputs, like 4, 8, 16, 32 … In the case of, say, a
4-way MUX, you get the following Verilog code if you use the ternary operator:

Example of what NOT to do:

wire in0, in1, in2, in3, out;  
wire [1:0] sel;  
assign out = (sel==2’b00) ? in0 :  

(sel==2’b01) ? in1 :  
(sel==2’b10) ? in2 :  
in3 ;

 3

ENEE 245: Digital Circuits & Systems Lab — Lab 7

What this actually produces is a priority encoder, just like it would if you use a long list of if-then-
else statements. So, while it might be functionally equivalent, it is in fact a bit more expensive in
both resources (die area, gates, power) and time. The following tri-state buffer implementation is a
better solution (similar to the transmission-gate implementations above):

wire in0, in1, in2, in3, out;  
wire [1:0] sel;  
assign out = (sel==2’b0) ? in0 : 1’bz,  

out = (sel==2’b1) ? in1 : 1’bz,  
out = (sel==2’b2) ? in2 : 1’bz,  
out = (sel==2’b3) ? in3 : 1’bz;

Note that this scales to wide data widths. For instance, the following is a 4-way MUX for selecting
between four different 64-bit data values:

wire [63:0] in0, in1, in2, in3, out;  
wire [1:0] sel;  
assign out = (sel==2’d0) ? in0 : 64’bz,  

out = (sel==2’d1) ? in1 : 64’bz,  
out = (sel==2’d2) ? in2 : 64’bz,  
out = (sel==2’d3) ? in3 : 64’bz;

Another good option is the case statement, which is extremely useful in module format:

module (in0, in1, in2, in3, in4, in5, in6, in7, sel, out);

input [63:0] in0, in1, in2, in3, in4, in5, in6, in7;  
input [2:0] sel;  
output [63:0] out;

always @(in0 or in1 or in2 or in3 or in4 or in5 or in6 or in7 or sel)  
case (sel)  

3’b000 : out = in0;  
3’b001 : out = in1;  
3’b010 : out = in2;  
3’b011 : out = in3;  
3’b100 : out = in4;  
3’b101 : out = in5;  
3’b110 : out = in6;  
3’b111 : out = in7;  

endcase  
endmodule

Here is the corresponding tri-state buffer implementation:

module (in0, in1, in2, in3, in4, in5, in6, in7, sel, out);

input [63:0] in0, in1, in2, in3, in4, in5, in6, in7;  
input [2:0] sel;  
output [63:0] out;

assign out = (sel==3’d0) ? in0 : 64’bz,  
out = (sel==3’d1) ? in1 : 64’bz,  
out = (sel==3’d2) ? in2 : 64’bz,  
out = (sel==3’d3) ? in3 : 64’bz;  
out = (sel==3’d4) ? in4 : 64’bz,  
out = (sel==3’d5) ? in5 : 64’bz,  
out = (sel==3’d6) ? in6 : 64’bz,  
out = (sel==3’d7) ? in7 : 64’bz;

endmodule

 4

ENEE 245: Digital Circuits & Systems Lab — Lab 7

Note that it is very important, when using either the tri-state implementation or the case statement,
that you have a line for every possible value of the select signal. If you, the designer, happen to know
that, for instance, only 6 out of 8 possible bit patterns will be used by the hardware while running,
you would be tempted to write code accounting for only those six possibilities, leaving the other two
out entirely. This will cause problems with the case statement, because Verilog does not know that
only six of the 8 states are possible, and it will try to account for the missing two values by inserting a
lot of inefficient circuitry that you might find puzzling to debug. In your case statement, you should
have a “default” for all unexpected values, for instance, as in the following code, which assumes that
select values “6” and “7” will never happen:

always @(in0 or in1 or in2 or in3 or in4 or in5 or sel)  
case (sel)  

3’b000 : out = in0;  
3’b001 : out = in1;  
3’b010 : out = in2;  
3’b011 : out = in3;  
3’b100 : out = in4;  
3’b101 : out = in5;  
default : out = 64’bz;  

endcase

When using the tri-state buffer implementation, which requires a separate comparator for each
possible input, it is not necessary to account for any “unused” bit patterns. However, for debugging
purposes (e.g., for other engineers looking at your code), you might want to account for them
anyway.

Pre-Lab Preparation
Please make sure to complete the prelab before you attend your lab section. The lab will be long and
frustrating if you do not do the prelab ahead of time. In this lab, you will use Verilog to implement
several multiplexer configurations on the Xilinx Spartan 3E FPGA. The Verilog used to describe the
multiplexers will be in structural as well as procedural.

Part 1 — 2:1 Multiplexer

1. Create a top-level design called mux21_top that connects inputs a and b to the rightmost
two slide switches of Nexys2, connects input s to btn[0] of Nexys2, and connects output y to
ld[0].

2. Perform a functional simulation of your design.
3. Create a symbol for the multiplexer.

Part 2 — 4-Bit Wide 2:1 MUX Using if Statement

1. Create an N-bit wide 2:1 MUX using the parameter statement. Create a symbol for it.
2. Create a 4-bit wide 2:1 MUX by instantiating the N-bit wide MUX designed above.
3. Functional Simulation. Perform a functional simulation of the circuit to verify that it is

working correctly.
4. Create Symbol. Create a symbol for the multiplexer to use in the graphical editor. This

creates a symbol file that is a Graphic File and can be viewed and edited by opening it.

Part 3 — 4-Bit Wide 4:1 MUX

1. Design a 4-bit wide 4:1 multiplexer from three 4-bit wide 2:1 multiplexers.
2. Perform a functional simulation of the circuit. Paste the results in your prelab report.

 5

ENEE 245: Digital Circuits & Systems Lab — Lab 7

3. Create a symbol for the 4-bit wide 4:1 MUX to use in the graphical editor.
4. Design a 4:1 multiplexer using the Verilog case statement.
5. Simulate the design. Paste the results in your prelab report.
6. Bring your Verilog codes in a flash drive.

Pre-Lab Report

In your prelab report, include circuit schematics, Verilog programs, and simulation results for all
multiplexers discussed above.
Incorrect or incomplete designs and Verilog programs will not receive full credit. If you have any
problems with Verilog syntax and other pre-lab related issues, please resolve them before coming to
the lab. Your TA may not be able to help you with these issues during the lab session.

In-Lab Procedure
Bring flash drives to store your data.
Ask the TA questions regarding any procedures about which you are uncertain.
Set your 4-bit 4:1 MUX Verilog file (the hierarchical one built from three 2:1 multiplexers) as the
top module of your design and implement the complete design (synthesize, map, and Place & Route)
using the Xilinx ISE tools. Program the FPGA using the bit-stream file which is generated in the
process. For checkoff, you will show the TA the following:
1. Use hard-wired values on the expansion board to drive your inputs; e.g., have eight inputs

connected directly to GND and eight inputs connected directly to VDD, and use these to
form your inputs that your MUX will select between. Do not hard-code values into your
Verilog, or the synthesis tools will optimize the circuitry into no-ops.

2. Show the multiplexer working on the board.
3. Demonstrate at least one selection operation from the patterns you have used in the test

bench. Show that your simulation results above match the observed waveforms on the DLA.

Post-Lab Report
Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs
through your DLA output and note any differences between what you simulated and how the
circuits behaved in the lab.
Along with your post-lab report, submit the observed waveforms (in separate sheets) for the 4-bit
wide 4:1 multiplexer.

 6

