
ENEE 245: Digital Circuits & Systems Lab — Lab 10

Objectives
The objectives of this laboratory are the following: 

• To learn how to instantiate the Static Synchronous RAMs offered in FPGAs 
• To start learning about control of memories 

In this lab you will build a simple controller that sends out a series of commands, comprising several 
timing signals and a combined command/address/data bus. The important things will be keeping 
track of where in the sequence of operations your controller is, and reading data on and off the data 
bus, into and out of an internal data array. This array will be implemented by the built-in memory 
blocks provided in modern FPGAs. 

Flash Command Interface 

ONFI-compliant NAND flash chips have the following interface and internals: 

  
The ONFI 4.0 NAND flash interface uses these pins in the following way: 
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Architecture
These devices use NAND Flash electrical and command interfaces. Data, commands, 
and addresses are multiplexed onto the same pins and received by I/O control circuits. 
This provides a memory device with a low pin count. The commands received at the I/O 
control circuits are latched by a command register and are transferred to control logic 
circuits for generating internal signals to control device operations. The addresses are 
latched by an address register and sent to a row decoder or a column decoder to select a 
row address or a column address, respectively.

The data is transferred to or from the NAND Flash memory array, byte by byte (x8), 
through a data register and a cache register. The cache register is closest to the I/O 
control circuits and acts as a data buffer for I/O data, whereas the data register is closest 
to the memory array and acts as a data buffer for NAND Flash memory array operation.

The NAND Flash memory array is programmed and read in page-based operations; it is 
erased in block-based operations. During normal page operations, the data and cache 
registers are tied together and act as a single register. During cache operations, the data 
and cache registers operate independently to increase data throughput.

These devices also have a status register that reports the status of device operations.

Addressing
NAND Flash devices do not contain dedicated address pins. Addresses are loaded using 
a 5-cycle sequence as shown in Tables 3 and 4, on pages 15 and 16. See Figure 7 on 
page 14 for additional memory mapping and addressing details.

Figure 6:  NAND Flash Functional Block Diagram
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Figure 76 NV-DDR2 and NV-DDR3 data interface command description 

 
NOTE: When the bus state is not a data input or data output cycle, if ALE, CLE and CE_n are all low (i.e. Idle state) then DQS (DQS_t) shall be 
held high by the host to prevent the device from enabling ODT.  If ODT is disabled, then DQS is a don’t care during Idle states..  
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Figure 75 NV-DDR data interface command description 
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Figure 75 NV-DDR data interface command description 
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Figure 75 NV-DDR data interface command description 
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This is the latest DDR interface, NV-DDR2/3. The CLK signal at the top is not used in the interface 
but is shown so you understand that the controller might very well use a clock that is much faster 
than the interface between the controller and the flash device. In fact, this example shows a clock 
that is four times faster than most of the signals, and twice as fast as the DDR input/output data. 
This is how you should build your controller simply because it is the easiest way to do it. 
In this lab, we will implement a subset of these signals, and we will start with single data rate (SDR) 
instead of double data rate (DDR). First, we will redefine the 8-bit DQ bus in flash to use only 2 
bits, to reduce the complexity of your implementation and to simplify your testing process when 
hooking the DLA to your board. 
On the FPGA board there are four buttons and 8 switches. You will use these as follows: 

• You will use the 8 switches to identify address values: your controller will read the address 
from the switches, interpreting switches 0–3 to indicate the column address (the “C1” and 
“C2” bytes in the various commands), and switches 4–7 to indicate the row address (the 
“R1” and “R2” bytes in the various commands). The smaller numbers represent less 
significant bits. 

• You will use the buttons to identify commands: your controller will respond to the press of a 
button by reading the address from the switches and issue the appropriate command signals.  
➡ Button 1: 0b11 Reset command (command only, no address)      
➡ Button 2: 0b01 Page Program command (use switches 0–3 to indicate the column      

address and switches 4–7 to indicate the row address) 
➡ Button 4: Initialize the device: set all internal registers to the correct starting values and      

drive the bi-directional (inout) DQ bus with high-Z.  
You will use a 2-bit data bus (as opposed to 8-bit), which means that you will use the 2-bit 
command codes provided above instead of the real ones in ONFI flash devices, and you will break 
the row and column addresses into 2-bit chunks and send those chunks over multiple cycles. Your 
data will be SDR, not DDR. Other than these points, your implementation will resemble fairly 
closely a real flash interface. You need to implement the following six signals: 

DQ bus  2-bit unidirectional I/O, including commands, addresses, and data            
Commands, addresses, and data are all single data rate (SDR); all but the data 
pulses are timed by the WE# strobe; the data pulses are timed by the DQS 
(DQ Strobe). 

DQS DQ Strobe, bidirectional                 
CE# Chip Enable, active low                 
CLE Command-Latch Enable                 
ALE Address-Latch Enable                 
WE# Write Enable, active low (is effectively the command/address timing strobe)                

These commands take the following forms. In this lab, you will be emulating their timing, but you 
will be using different command-code numbers, because you will use a 2-bit data bus for simplicity. 
Implement the following, where the 00b. 01b, 10b, and 11b numbers represent the binary command 
values that you are to put out onto the bus. The internal CLK signal and example state values are 
shown just for your convenience; you need not implement your controller this way—only the timing 
of the external signals matters. For each command, there are two variations given, in which the only 
difference is whether the internal state machine is run off the rising or falling edge of the clock. 
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Reset Command 
The timing for the Reset command is given below, in two variations, depending on whether 
you want to use the rising or falling edge of the clock to drive your state machine. 

  
Page Program Command  
The timing for the Page Program command is given below, in two variations, depending on 
whether you want to use the rising or falling edge of the clock to drive your state machine. 

Note that Page Program has a lengthy command sequence, as you must send not only the 
command (01b) but also four address pulses on the bus, giving the eight total bits, two at a 
time, that were read from the 8-bit switch bus. The CE, CLE, ALE, and WE signals need to 
be operated appropriately and are given. This command adds the component of data, which 
was not part of the Reset command. There will be 32 data transfers from the controller to the 
memory device: 32 2-bit pulses (D0 .. D31), so a total of 64 bits. It is recommended that 
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you have a separate 5-bit counter that gets initialized to 0x1F when you enter the 
DATA_OUTPUT state, and you simply count down to zero; when done, stop transmitting 
data, drive the DQ bus and DQS wire with high-Z, and go into the IDLE state. The data is 
clocked with a different clocking signal than the command and address pulses. The DQS 
signal (DQ Strobe) is sent along with the data. For this lab, we will not do DDR data 
transfers but will instead do simple single-data-rate transmission of data, and a future lab will 
add a DDR component. 

The signals are all output only; the controller drives them, and the device receives them. The I/O and 
DQS signals are unidirectional for this assignment (“output” in Verilog), as you will not be 
implementing the Page Read command until the next lab. 
You should map these six signals (seven wires) as follows in your User Constraints File (the first seven 
lines in the FX2 connector set, which implements general I/O): 

NET “ceb" LOC = “B4"; # Bank = 0, Pin name = IO_L24N_0, Type = I/O, Sch name = R-IO1      

NET "cle" LOC = “A4"; # Bank = 0, Pin name = IO_L24P_0, Type = I/O, Sch name = R-IO2      

NET "ale" LOC = “C3”; # Bank = 0, Pin name = IO_L25P_0, Type = I/O, Sch name = R-IO3      

NET “web" LOC = “C4"; # Bank = 0, Pin name = IO, Type = I/O, Sch name = R-IO4      

NET “dq[0]" LOC = “B6"; # Bank = 0, Pin name = IO_L20P_0, Type = I/O, Sch name = R-IO5    

NET "dq[1]" LOC = “D5"; # Bank = 0, Pin name = IO_L23N_0/VREF_0, Type = VREF, Sch name = R-IO6    

#NET "dqs" LOC = “C5"; # Bank = 0, Pin name = IO_L23P_0, Type = I/O, Sch name = R-IO7     

Block RAM in the FPGA 

Your FPGA has quite a few libraries that provide already-created circuits for you to use in your 
designs. The library documentation is on the course website. For this lab, you will use the Static 
Synchronous RAM facility, which is extremely powerful. Because we only want to get the main idea 
and not necessarily talk to a real flash device, we will just use a narrow bus and a small burst length. 
Nonetheless, the general facility that you use and get familiar with as part of this lab is extremely 
useful and will become an important tool in your future designs. 
We will instantiate the RAM32X2S block, which is a 32-deep SRAM that is 2 bits wide, running off 
the positive edge of the clock. In general, your FPGA has numerous block RAMs, up to 2KB in size, 
so this really is just a taste of what the FPGA can do. It is instantiated this way: 

 
RAM32X2S #( 

 .INIT_00(32’hCAFEF00D), // INIT for bit 0 of RAM       
 .INIT_01(32’h005EABED)  // INIT for bit 1 of RAM       

) RAM32X2S_inst ( 

 .O0(O0),   // RAM data[0] output                       
 .O1(O1),   // RAM data[1] output                       
 .A0(A0),   // RAM address[0] input                       
 .A1(A1),   // RAM address[1] input                       
 .A2(A2),   // RAM address[2] input                       
 .A3(A3),   // RAM address[3] input                       
 .A4(A4),   // RAM address[4] input                       
 .D0(D0),   // RAM data[0] input                       
 .D1(D1),   // RAM data[1] input                       
 .WCLK(WCLK),  // Write clock input                   
 .WE(WE)       // Write enable input                   

); 
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If you put this into your code, giving it a unique instance name (i.e., replace “instance_name” with 
whatever you want to call it), then the synthesis tools will grab one of these from the Xilinx library 
and instantiate it onto your FPGA. The format is that the top parenthetical (preceded by a # sign) is 
optional and, if present, represents the initialization values; the bottom parenthetical is not optional 
and represents the wire connections to the module. Use the given initialization values, so that 
checking your output will be easier. 
Remember: The data I/O between controller and memory device will be in 32-pulse increments, i.e., 
32 x 2 bits in total. Each read/write operation will be this large, no smaller. So your data must be 
stored and read out from the Static RAM, which has enough space to hold the data. So you will be 
using a 5-bit address input to the Block RAM, specifying 32 different data locations. 

Pre-Lab Preparation
Design your controller. Your goal is to create timing diagrams like the ones above. Use the Xilinx 
design facility to generate waveforms for each command, and bring these as your pre-lab write-up. 
On the course website will be found a module for you to instantiate in your test bench and use as a 
memory device for testing, so that it can respond to your read request and return data with correct 
timing. 

In-Lab Procedure
Bring flash drives to store your data.  
Ask the TA questions regarding any procedures about which you are uncertain.  
Complete the following tasks:  

• Program your system onto the FPGA board. 

• Connect the FPGA to the break-out board. 
• Run the system and use the DLA to observe the 6 bits of the controller output. Save the 

DLA’s output for your post-lab report. 
• Look at the detailed RTL schematics produced by the software; save it for your post-lab 

report. 
• Look at the timing report that gives the pin-to-pin delays for input/output combinations of 

every pin. Save these reports and tables for your post-lab report. 
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Post-Lab Report
Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs 
through your DLA output and note any differences between what you simulated and how the 
circuits behaved in the lab.  
Regarding the RTL schematics produced by the software—how did the design software synthesize 
your code? Where did it choose poorly, and how could it have done better? Could you have better 
specified your design to get more efficient results? 
Regarding the timing report that gives the pin-to-pin delays for input/output combinations of every 
pin—what does the design software say for the timing? How fast is each component? How fast could 
you, in theory, run your design?
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