
ENEE 245: Digital Circuits & Systems Lab — Lab 10

Objectives
The objectives of this laboratory are the following:

• To learn how to instantiate the Static Synchronous RAMs offered in FPGAs
• To start learning about control of memories

In this lab you will build a simple controller that sends out a series of commands, comprising several
timing signals and a combined command/address/data bus. The important things will be keeping
track of where in the sequence of operations your controller is, and reading data on and off the data
bus, into and out of an internal data array. This array will be implemented by the built-in memory
blocks provided in modern FPGAs.

Flash Command Interface

ONFI-compliant NAND flash chips have the following interface and internals: 

The ONFI 4.0 NAND flash interface uses these pins in the following way:

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture F"

Bruce Jacob"

University of Crete

SLIDE �3

PDF: 09005aef8331b189 / Source: 09005aef8331b1c4 Micron Technology, Inc., reserves the right to change products or speci f ications without notice .
32gb_nand_mlc_l63a__2.fm - Rev. A 12/08 EN 13 ©2008 Micron Technology, Inc. A ll rights reserved .

 32Gb, 64Gb, 128Gb: NAND Flash
Architecture

Micron Confidential and Proprietary Advance

Architecture
These devices use NAND Flash electrical and command interfaces. Data, commands,
and addresses are multiplexed onto the same pins and received by I/O control circuits.
This provides a memory device with a low pin count. The commands received at the I/O
control circuits are latched by a command register and are transferred to control logic
circuits for generating internal signals to control device operations. The addresses are
latched by an address register and sent to a row decoder or a column decoder to select a
row address or a column address, respectively.

The data is transferred to or from the NAND Flash memory array, byte by byte (x8),
through a data register and a cache register. The cache register is closest to the I/O
control circuits and acts as a data buffer for I/O data, whereas the data register is closest
to the memory array and acts as a data buffer for NAND Flash memory array operation.

The NAND Flash memory array is programmed and read in page-based operations; it is
erased in block-based operations. During normal page operations, the data and cache
registers are tied together and act as a single register. During cache operations, the data
and cache registers operate independently to increase data throughput.

These devices also have a status register that reports the status of device operations.

Addressing
NAND Flash devices do not contain dedicated address pins. Addresses are loaded using
a 5-cycle sequence as shown in Tables 3 and 4, on pages 15 and 16. See Figure 7 on
page 14 for additional memory mapping and addressing details.

Figure 6: NAND Flash Functional Block Diagram

Address register

Data register

Cache register

Status register

Command register

CE#

Vcc Vss

CLE
ALE

WE#

RE#
WP#

I/Ox

Control
logic

I/O
control

R/B#

Ro
w

 d
ec

od
e

Column decode

NAND Flash
array

(2 planes)

Recall general device organization

���1

Memories and Control — Some Basics
ENEE 245: Digital Circuits and Systems Laboratory
Lab 10

174

Figure 76 NV-DDR2 and NV-DDR3 data interface command description

NOTE: When the bus state is not a data input or data output cycle, if ALE, CLE and CE_n are all low (i.e. Idle state) then DQS (DQS_t) shall be
held high by the host to prevent the device from enabling ODT. If ODT is disabled, then DQS is a don’t care during Idle states..

WE_n

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

RE_n

tCCS

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

173

Figure 75 NV-DDR data interface command description

CLK

CLE

ALE

DQ[7:0]

DQS

85h

CE_n

C1 C2 D0

W/R_n

tCCS

tCAD tCAD

D1

ENEE 245: Digital Circuits & Systems Lab — Lab 10

This is the latest DDR interface, NV-DDR2/3. The CLK signal at the top is not used in the interface
but is shown so you understand that the controller might very well use a clock that is much faster
than the interface between the controller and the flash device. In fact, this example shows a clock
that is four times faster than most of the signals, and twice as fast as the DDR input/output data.
This is how you should build your controller simply because it is the easiest way to do it.
In this lab, we will implement a subset of these signals, and we will start with single data rate (SDR)
instead of double data rate (DDR). First, we will redefine the 8-bit DQ bus in flash to use only 2
bits, to reduce the complexity of your implementation and to simplify your testing process when
hooking the DLA to your board.
On the FPGA board there are four buttons and 8 switches. You will use these as follows:

• You will use the 8 switches to identify address values: your controller will read the address
from the switches, interpreting switches 0–3 to indicate the column address (the “C1” and
“C2” bytes in the various commands), and switches 4–7 to indicate the row address (the
“R1” and “R2” bytes in the various commands). The smaller numbers represent less
significant bits.

• You will use the buttons to identify commands: your controller will respond to the press of a
button by reading the address from the switches and issue the appropriate command signals.
➡ Button 1: 0b11 Reset command (command only, no address)
➡ Button 2: 0b01 Page Program command (use switches 0–3 to indicate the column

address and switches 4–7 to indicate the row address)
➡ Button 4: Initialize the device: set all internal registers to the correct starting values and

drive the bi-directional (inout) DQ bus with high-Z.
You will use a 2-bit data bus (as opposed to 8-bit), which means that you will use the 2-bit
command codes provided above instead of the real ones in ONFI flash devices, and you will break
the row and column addresses into 2-bit chunks and send those chunks over multiple cycles. Your
data will be SDR, not DDR. Other than these points, your implementation will resemble fairly
closely a real flash interface. You need to implement the following six signals:

DQ bus 2-bit unidirectional I/O, including commands, addresses, and data  
Commands, addresses, and data are all single data rate (SDR); all but the data
pulses are timed by the WE# strobe; the data pulses are timed by the DQS
(DQ Strobe).

DQS DQ Strobe, bidirectional
CE# Chip Enable, active low
CLE Command-Latch Enable
ALE Address-Latch Enable
WE# Write Enable, active low (is effectively the command/address timing strobe)

These commands take the following forms. In this lab, you will be emulating their timing, but you
will be using different command-code numbers, because you will use a 2-bit data bus for simplicity.
Implement the following, where the 00b. 01b, 10b, and 11b numbers represent the binary command
values that you are to put out onto the bus. The internal CLK signal and example state values are
shown just for your convenience; you need not implement your controller this way—only the timing
of the external signals matters. For each command, there are two variations given, in which the only
difference is whether the internal state machine is run off the rising or falling edge of the clock.

���2

ENEE 245: Digital Circuits & Systems Lab — Lab 10

Reset Command
The timing for the Reset command is given below, in two variations, depending on whether
you want to use the rising or falling edge of the clock to drive your state machine.

Page Program Command
The timing for the Page Program command is given below, in two variations, depending on
whether you want to use the rising or falling edge of the clock to drive your state machine.

Note that Page Program has a lengthy command sequence, as you must send not only the
command (01b) but also four address pulses on the bus, giving the eight total bits, two at a
time, that were read from the 8-bit switch bus. The CE, CLE, ALE, and WE signals need to
be operated appropriately and are given. This command adds the component of data, which
was not part of the Reset command. There will be 32 data transfers from the controller to the
memory device: 32 2-bit pulses (D0 .. D31), so a total of 64 bits. It is recommended that

CE#
WE#
ALE
CLE
DQ

DQS

CLK

11b

state RES RES_A IDLE

CE#
WE#
ALE
CLE
DQ

DQS

CLK

11b

state RES RES_A IDLE

���3

PRG_E PRG_B

CE#
WE#
ALE
CLE
DQ

DQS

CLK

01b

state PRG PRG_A

C1 C2 R1 R2

PRG_C PRG_D

D0 D1 … D30 D31

DATA_OUTPUT PRG_F PRG_G IDLE

PRG_E PRG_B

CE#
WE#
ALE
CLE
DQ

DQS

CLK

01b

state PRG PRG_A

C1 C2 R1 R2

PRG_C PRG_D

D0 D1 … D30 D31

DATA_OUTPUT PRG_F PRG_G IDLE

ENEE 245: Digital Circuits & Systems Lab — Lab 10

you have a separate 5-bit counter that gets initialized to 0x1F when you enter the
DATA_OUTPUT state, and you simply count down to zero; when done, stop transmitting
data, drive the DQ bus and DQS wire with high-Z, and go into the IDLE state. The data is
clocked with a different clocking signal than the command and address pulses. The DQS
signal (DQ Strobe) is sent along with the data. For this lab, we will not do DDR data
transfers but will instead do simple single-data-rate transmission of data, and a future lab will
add a DDR component.

The signals are all output only; the controller drives them, and the device receives them. The I/O and
DQS signals are unidirectional for this assignment (“output” in Verilog), as you will not be
implementing the Page Read command until the next lab.
You should map these six signals (seven wires) as follows in your User Constraints File (the first seven
lines in the FX2 connector set, which implements general I/O):

NET “ceb" LOC = “B4"; # Bank = 0, Pin name = IO_L24N_0, Type = I/O, Sch name = R-IO1

NET "cle" LOC = “A4"; # Bank = 0, Pin name = IO_L24P_0, Type = I/O, Sch name = R-IO2

NET "ale" LOC = “C3”; # Bank = 0, Pin name = IO_L25P_0, Type = I/O, Sch name = R-IO3

NET “web" LOC = “C4"; # Bank = 0, Pin name = IO, Type = I/O, Sch name = R-IO4

NET “dq[0]" LOC = “B6"; # Bank = 0, Pin name = IO_L20P_0, Type = I/O, Sch name = R-IO5

NET "dq[1]" LOC = “D5"; # Bank = 0, Pin name = IO_L23N_0/VREF_0, Type = VREF, Sch name = R-IO6

#NET "dqs" LOC = “C5"; # Bank = 0, Pin name = IO_L23P_0, Type = I/O, Sch name = R-IO7

Block RAM in the FPGA

Your FPGA has quite a few libraries that provide already-created circuits for you to use in your
designs. The library documentation is on the course website. For this lab, you will use the Static
Synchronous RAM facility, which is extremely powerful. Because we only want to get the main idea
and not necessarily talk to a real flash device, we will just use a narrow bus and a small burst length.
Nonetheless, the general facility that you use and get familiar with as part of this lab is extremely
useful and will become an important tool in your future designs.
We will instantiate the RAM32X2S block, which is a 32-deep SRAM that is 2 bits wide, running off
the positive edge of the clock. In general, your FPGA has numerous block RAMs, up to 2KB in size,
so this really is just a taste of what the FPGA can do. It is instantiated this way:

 
RAM32X2S #(

 .INIT_00(32’hCAFEF00D), // INIT for bit 0 of RAM 
 .INIT_01(32’h005EABED) // INIT for bit 1 of RAM

) RAM32X2S_inst (

 .O0(O0), // RAM data[0] output 
 .O1(O1), // RAM data[1] output 
 .A0(A0), // RAM address[0] input 
 .A1(A1), // RAM address[1] input 
 .A2(A2), // RAM address[2] input 
 .A3(A3), // RAM address[3] input 
 .A4(A4), // RAM address[4] input 
 .D0(D0), // RAM data[0] input 
 .D1(D1), // RAM data[1] input 
 .WCLK(WCLK), // Write clock input 
 .WE(WE) // Write enable input

);

���4

ENEE 245: Digital Circuits & Systems Lab — Lab 10

If you put this into your code, giving it a unique instance name (i.e., replace “instance_name” with
whatever you want to call it), then the synthesis tools will grab one of these from the Xilinx library
and instantiate it onto your FPGA. The format is that the top parenthetical (preceded by a # sign) is
optional and, if present, represents the initialization values; the bottom parenthetical is not optional
and represents the wire connections to the module. Use the given initialization values, so that
checking your output will be easier.
Remember: The data I/O between controller and memory device will be in 32-pulse increments, i.e.,
32 x 2 bits in total. Each read/write operation will be this large, no smaller. So your data must be
stored and read out from the Static RAM, which has enough space to hold the data. So you will be
using a 5-bit address input to the Block RAM, specifying 32 different data locations.

Pre-Lab Preparation
Design your controller. Your goal is to create timing diagrams like the ones above. Use the Xilinx
design facility to generate waveforms for each command, and bring these as your pre-lab write-up.
On the course website will be found a module for you to instantiate in your test bench and use as a
memory device for testing, so that it can respond to your read request and return data with correct
timing.

In-Lab Procedure
Bring flash drives to store your data.
Ask the TA questions regarding any procedures about which you are uncertain.
Complete the following tasks:

• Program your system onto the FPGA board.

• Connect the FPGA to the break-out board.
• Run the system and use the DLA to observe the 6 bits of the controller output. Save the

DLA’s output for your post-lab report.
• Look at the detailed RTL schematics produced by the software; save it for your post-lab

report.
• Look at the timing report that gives the pin-to-pin delays for input/output combinations of

every pin. Save these reports and tables for your post-lab report.

���5

ENEE 245: Digital Circuits & Systems Lab — Lab 10

Post-Lab Report
Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs
through your DLA output and note any differences between what you simulated and how the
circuits behaved in the lab.
Regarding the RTL schematics produced by the software—how did the design software synthesize
your code? Where did it choose poorly, and how could it have done better? Could you have better
specified your design to get more efficient results?
Regarding the timing report that gives the pin-to-pin delays for input/output combinations of every
pin—what does the design software say for the timing? How fast is each component? How fast could
you, in theory, run your design?

���6

