
ENEE 245: Digital Circuits & Systems Lab — Lab 5

Objectives

The objectives of this laboratory are the following: 
• To learn how to represent your schematics in Verilog  
• To learn how to program an FGPA 
• To start to understand the benefits of designing hardware via software 

Verilog is a powerful language, and writing code that produces hardware makes design and 
debugging of that hardware far simpler than using a breadboard. As a result, you will find that it is 
easy to design circuits of incredible complexity. Software design of hardware (i.e., CAD, or 
computer-aided design) is the only way that modern computer chips could be built. To try to design 
and test them by hand would be nothing short of impossible. 
In this lab you will design a simple 3-bit ALU in Verilog, for the Xilinx FPGA board, and interface it 
with the manual switches and LED lights as output. You will also design a simple 1-bit full adder so 
that you can do an in-depth analysis of the efficiency of synthesized circuits. 

Verilog & FPGA Overview

A hardware description language (HDL) is a method to describe hardware using software. An HDL 
representation of any hardware block is a software file, which adheres to a specific syntactical format. 
We will use a tool called Xilinx Integrated Software Environment (Xilinx ISE) which will help us to 
convert Verilog codes to fully functional designs on the Xilinx series of Field Programmable Gate 
Arrays (FPGAs). In this lab, you will design a full adder and ALU using Verilog, on a Nexys2 board 
(from Digilent), which contains a Spartan 3E FPGA (from Xilinx). You will also use the I/Os on the 
Nexys2 board to read in input bits and display the output. 

Verilog 

Throughout the semester, you will build increasingly complex designs using Verilog, a hardware 
description language (HDL) widely used to model digital systems. The language supports the design, 
verification, and implementation of digital circuits at various levels of abstraction. The language 
differs from a conventional programming language such as C in that the execution of statements is 
not strictly sequential. 
A Verilog design can consist of a hierarchy of modules. Modules are defined with a set of input, 
output, and bidirectional ports. Internally, a module contains a list of wires and registers. Concurrent 
statements define the behavior of the module by defining the relationships between the ports, wires, 
and registers. Register Assignment statements are placed inside a begin/end block and come in two 
flavors: Blocking and Non-Blocking:  

regA = output;  // blocking assignment           

regA <= output;  // non-blocking assignment           

Blocking assignments are executed in series within the block, much like a C-language program. This 
is not how real hardware works, so these statements are synthesized by the design tools into small 
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sequential state machines that eat up power, consume physical resources, reduce the overall 
performance, and in general are a bad idea. On the other hand, Non-Blocking assignments are 
executed in parallel within the block and represent how actual hardware works. All Concurrent 
statements and all begin/end blocks in the design are executed in parallel. This parallel activity (on a 
chip-wide scale) is the key difference between Verilog and standard programming languages. A 
module can also contain one or more instances of another module to define hierarchy. 
Only a subset of statements in the language is synthesizable. If the modules in a design contain only 
synthesizable statements, software tools like Xilinx ISE can be used to synthesize the design into a 
gate-level netlist that describes the basic components and connections to be implemented in 
hardware. The synthesized netlist may then be transformed into a bit-stream for any programmable 
logic devices like FPGAs. Note that this enables a significant improvement in designer productivity: 
a designer writes hardware behavior in synthesizable Verilog and the ISE (or similar) tool realizes this 
circuit on a hardware platform such as an FPGA. Verilog designs can be written in two forms: 
1) Structural Verilog: This is a Verilog coding style in which an exact gate-level netlist is used to 

describe explicit connections between various components, which are explicitly declared 
(instantiated) in the Verilog code. Structural Verilog is described below, as this lab uses structural 
Verilog. 

2) Behavioral Verilog: In this format, Verilog code is written to describe the function of the 
hardware, without making explicit references to connections and components. A logic synthesis 
tool is required in this case to convert this Verilog code into gate-level netlists. Usually, a 
combined coding style is used where part of the hardware is described in structural format and 
part of the hardware is described in behavioral format according to convenience.

Wires 

Wires in structural Verilog are analogous to wires in a circuit you build by hand: they are used to 
transmit values between inputs and outputs. Wires should be declared before they are used: 

wire a;     

wire b, c;  // declare multiple wires using commas 

The wires above are scalar (i.e. represent 1 bit). They can also be vectors (i.e., busses): 
wire [7:0]   d;  // 8-bit wire declaration 

wire [31:0]  e;  // 32-bit wire declaration 

Wires can be assigned to other wires, concatenated, and indexed: 
wire [31:0] f; 

assign f = {d,e[23:0]}; // concatenate d with lower 24 bits of e 

In the line above, the brackets [] are used to index a 24-bit range of e and the braces {} concatenate 
comma-separated wires. 

Gates (Structural Primitives) 

In this lab, you may use the following primitives:  and, or, xor, not, nand, nor, xnor. In general, the 
syntax is: 

operator (output, input1, input2); 

For example, the following Verilog statement implements the Boolean equation F = a OR b: 
wire a, b, F; 

/* … some code that assigns values to a and b */ 
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or (F, a, b);   

Complex logic functions can be implemented using intermediate wires between these primitive 
gates. 

Modules 

Modules provide a means of abstraction and encapsulation for your design. They consist of a port 
declaration and Verilog code to implement the desired functionality. For example, consider a module 
that computes y = (a + b)(c + d): 

module example_module(a, b, c, d, y); 

    // Port and wire declarations: 
    input wire a, b, c, d; 
    output wire y; 
    wire a_or_b, c_or_d; 

    // Logic: 
    or   (a_or_b, a, b); 
    or   (c_or_d, c, d); 
    and  (y, a_or_b, c_or_d);    

endmodule 

There are a few things to note from this example: 
1. The ports must be declared as input or output wires, but can be thought of as wires within the 

module. 
2. Wires declared within a module (such as a_or_b) are limited in scope to that module. 
3. Modules should be created in a Verilog file (.v) where the filename matches the module name (so 

the above example should be located in example_module.v). 
Then, after creating a module, you can instantiate it in other modules: 

example_module unique_name( 

    .a(a), .b(b), .c(c), .d(d), .y(result)); 

(Assuming a, b, c, d, and result are valid wires in the module that this instantiation occurs in, and 
unique_name is globally unique.) 
The syntax .<input/output>(<wire>) is used to explicitly hook up wires to the correct input/outputs 
of a module. You can also write 

example_module unique_name(a, b, c, d, result); // correct order 

which, while perfectly valid, is not recommended since it is possible to mix up the order of the wires. 
The first form is also easier to read. 

example_module unique_name(result, a, b, c, d); // wrong order!

Field Programmable Gate Arrays (FPGA) 

A field-programmable gate array is a semiconductor device containing programmable logic 
components called “logic blocks,” and programmable interconnects. Logic blocks can be 
programmed to perform the function of basic logic gates such as AND, and XOR, or more complex 
combinational functions such as decoders or mathematical functions. In most FPGAs, the logic 
blocks also include memory elements like flip-flops. A hierarchy of programmable interconnects 
allows logic blocks to be interconnected as needed by the system designer, somewhat like a one-chip 
programmable breadboard. Logic blocks and interconnects can be programmed in the field by the 
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customer or designer (after the FPGA is manufactured) to implement any logical function as and 
when required hence the name field programmable logic arrays. 
Realizing a circuit design on an FPGA board consists of three steps, which are performed using a 
software tool like Xilinx ISE, a tool from Xilinx which integrates various stages of the FPGA design 
cycle into one software tool: 

1) Synthesis: This is the process of converting a Verilog description into a primitive gate-level 
netlist. The final product of the design partitioning phase is a netlist file, a text file that 
contains a list of all the instances of primitive components in the translated circuit and a 
description of how they are connected. 

2) Implementation:  
a. Translation: The translate step takes all of the netlists and design constraints information 

and outputs a Xilinx NGD (native generic database) file. 
b. Mapping: The mapping step maps the above NGD file to the technology-specific 

components on the FPGA and generates an NCD (native circuit description) file. This is 
necessary because different FPGAs have different architectures, resources, and 
components. Among other tasks, it is responsible for the process of transforming the 
primitive gates and flip-flops in the netlist into LUTs (lookup tables) and other primitive 
FPGA elements. For example, if you described a circuit composed of many gates, but 
ultimately of 6 inputs and 1 output, the circuit will be mapped down to a single 6-LUT. 
Likewise, if you described a flip-flop it will be mapped to a specific type of flip-flop that 
actually exists on the FPGA. 

c. Placement: This step places the mapped components in a manner that minimizes wiring, 
delay etc. Placement takes a mapped design and determines the specific location of each 
component in the design on the FPGA. 

d. Routing: This step configures the programmable interconnects (wires) so as to wire the 
components in the design. Because the number of possible paths for a given signal is very 
large, and there are many signals, this is typically the most time-consuming part. 

3) Programming the FPGA Device: In this step, the placed and routed design is converted to a 
bit-stream using the Xilinx ISE tool. The bit-stream generated by the tool (as a .bit file) is 
loaded on to the FPGA. This bit-stream file programs the logic and interconnects of the 
FPGA in such a way that the design gets implemented. 

The figure below illustrates the design flow described above. 
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Digilent Nexys2 Development Board 

You will build several digital circuits this semester, ranging in complexity from a simple half adder to 
a simple digital calculator. Digilent's Nexys2 board is the vehicle you will use to implement these 
circuits. The Nexys2 board is a powerful digital system design platform built around the Xilinx 
Spartan 3E series of FPGAs. The board has the facility to program the FPGA using a USB 
connection to your PC. The board provides programmable interfaces to a global reset, four push 
buttons, a rotational knob, four on/off switches, eight LEDs, clock, memories and the 7-segment 
displays, as shown in the figure below. The key features and their location on the board is listed 
below, with a few of the I/O devices (LEDs, 7-segment display, switches and buttons) highlighted: 
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You will build several digital circuits this semester, ranging in complexity from a simple half 
adder to a simple digital calculator. Digilent's Nexys2 board is the vehicle you will use to 
implement these circuits. The Nexys2 board is a powerful digital system design platform built 
around the Xilinx Spartan 3E series of FPGAs. The board has the facility to program the FPGA 
using a USB connection to your PC. The board provides programmable interfaces to a global 
reset, four push buttons, a rotational knob, four on/off switches, eight LEDs, clock, memories 
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Figure 5.2: Components on a Nexys2 board [1] 
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Inputs: Slide Switches and Pushbuttons 

The Nexys2 board includes several input devices, output devices, and data ports, allowing many 
designs to be implemented without the need for any other components. Four pushbuttons and eight 
slide switches are provided for circuit inputs. Pushbutton inputs are normally low, and they are 
driven high only when the pushbutton is pressed. Slide switches generate constant high or low inputs 
depending on their position. Pushbutton and slide switch inputs use a series resistor for protection 
against short circuits (a short circuit would occur if an FPGA pin assigned to a pushbutton or slide 
switch was inadvertently defined as an output). 

� 	  

Nexys2 I/O devices and circuits

Please refer the reference manual for any additional information:  
Digilent Nexys2 Board Reference Manual http://www.digilentinc.com/Data/Products/NEXYS2/
Nexys2_rm.pdf 

Pre-Lab Preparation

Full Adder 

Design a 1-bit full adder, using either structural Verilog or behavioral Verilog or any combination of 
the two. As you should remember, the 1-bit full adder has the following inputs and outputs: 

• A (a 1-bit input operand) 
• B (a 1-bit input operand) 
• C_in (a 1-bit input operand) 
• Sum (a 1-bit output) 
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• C_out (a 1-bit output) 
Sum is the 1-bit sum of the three input operands, and C_out (carry-out) indicates the overflow case 
in which more than one of the input operands is a 1. 
The inputs should be tied to the switch inputs of the FPGA (these are called “sw<i>” in the user 
constraint file). The outputs should be tied to the LED outputs of the FPGA (these are called 
“Led<i>” in the user constraint file). 
Design a test harness to test every possible input to your adder and verify that, for each, it produces 
correct output. 

3-bit ALU 

Design the following Verilog modules, using behavioral code: 
• a 3-bit adder (has a 3-bit output and 1-bit overflow indicator) 
• a 3-bit subtractor (has a 3-bit output and 1-bit overflow indicator) 
• a 3-bit bitwise ANDer (has a 3-bit output) 
• a 3-bit bitwise ORer (has a 3-bit output) 
• an ALU that instantiates the preceding four modules and selects one for output based upon 

the input function code 
Your ALU should have the following inputs: 

• a 2-bit function code: 00 = ADD; 01 = SUB; 10 = AND; 11 = OR 
• two 3-bit inputs A and B 

These inputs should be tied to the switch inputs of the FPGA (these are called “sw<i>” in the user 
constraint file). 
Your ALU should have the following output: 

• a 3-bit result 
• a 1-bit overflow bit that only lights up if the adder or subtractor overflows 

These outputs should be tied to the LED outputs of the FPGA (these are called “Led<i>” in the user 
constraint file). 
The ALU should use the 2-bit function input to choose which module’s output gets connected to the 
ALU’s output. 
Note that the 1-bit overflow can simply be the topmost bit of a 4-bit sum/difference value, but it 
should not stay lit when switching from an add/subtract to an AND/OR function. 
Write a test harness that checks every possible input and output combination and verifies the design’s 
correctness. Simulate your code and bring a pre-lab write-up showing the code and simulation 
results. 

In-Lab Procedure

Bring flash drives to store your data.  
Ask the TA questions regarding any procedures about which you are uncertain.  
Complete the following tasks:  
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• Program your full adder onto the FPGA board. 

• Test every possible input and verify correctness. Demonstrate your working adder to the TA. 
• Look at the detailed RTL schematics produced by the software; save it for your post-lab 

report. 
• Look at the timing report that gives the pin-to-pin delays for input/output combinations of 

every pin. Save these reports and tables for your post-lab report. 
• Program your ALU onto the FPGA board. 

• Test every possible input and verify correctness. Demonstrate your working ALU to the TA. 
• Look at the detailed RTL schematics produced by the software; save it for your post-lab 

report. 
• Look at the timing report that gives the pin-to-pin delays for input/output combinations of 

every pin in every module. Save these reports and tables for your post-lab report. 

Post-Lab Report

Write up your code, schematics, and lab procedures. Demonstrate the correctness of your designs 
through your pre-lab simulations and note any differences between what you simulated and how the 
circuits behaved in the lab.  

Full Adder 

Regarding the RTL schematic produced by the software—how did the design software synthesis your 
code? Where did it choose poorly, and how could it have done better? Could you have better 
specified your design to get more efficient results? Given the simplicity of the design, and the many 
possible ways of generating the circuit, there is likely to be much you can say about this aspect. 
Moreover, because it is a small design, you should be able to do an extremely thorough analysis. In 
general, what can you say about synthesis of high-level code?  
Regarding the timing report that gives the pin-to-pin delays for input/output combinations of every 
pin—what does the design software say for the timing? How fast is it? 

3-bit ALU 

Regarding the RTL schematic produced by the software—how did the design software synthesis your 
code? Where did it choose poorly, and how could it have done better? Could you have better 
specified your design to get more efficient results?  
Regarding the timing report that gives the pin-to-pin delays for input/output combination of every 
module—what does the design software say for the timing of each component? How fast is your 
design? How fast is each component, and how fast is the overall ALU? Calculate the delay through 
the MUX at the end of the ALU.
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