ENEE 324-01*/SPRING 2018

ENGINEERING PROBABILITY

HOMEWORK # 1:
Posted on 01/24/2018

Please work out the (10) problems stated below — BT refers to the text: D.P. Bert-
sekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Sci-
entific (2008). Problem 1.55 (BT) refers to Problem 55 for Chapter 1 of BT (to be
found at the end of Chapter 1). Answers to the problems in BT can be found at
http://www.athenasc.com/probbook.html.

1.
Let S be a set. For arbitrary subsets A and B of S, show the following versions of the
De Morgan’s Laws:

(AUB)"=A°NB° and (ANB) = A°UB".

2.
Problem 1.2 (BT)

3.
Problem 1.3 (BT)

4.
Problem 1.4 (BT)

With A and B being sets, recall that a mapping g : A — B is said to be

e one-to-oneif g(a) = g(a’) with a and @’ in A, then a = a’ necessarily. A one-to-one
mapping is also called an injective mapping.

e onto if for every b in B there exists at least one element a in A such that b = g(a)
— In particular, g(A) = B where g(A) = {g(a) : a € A}. A mapping that is onto
is also called a surjective mapping.

e bijective (or is a bijection) if it is both injective and surjective, or equivalently,
one-to-one and onto.
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Recall that a set S is countable if there exists a one-to-one mapping f : S — N — There
may exist many such mappings. Countable sets come in two distinct flavors:

e The set S is finite if there exists a positive integer n in N such that the subset
f(S)=A{f(z): = € S} of N has exactly n (distinct) elements. In that case we say
that its cardinality is n, and we write |S| = n.

e The set S is said to be countably infinite if for any one-to-one mapping f : S — N,
there exists no positive integer n such that f(5) has exactly n (distinct) elements.

In that case we say that its cardinality is Ng (pronounced Aleph zero), and we write

A set S that is not countable is said to be uncountable.

5.
First a definition: Two sets A and B are said to be equipotent if there exists a bijection
g:A— B.

Show that a set S is finite (resp. countably infinite) if and only if it is equipotent with
the set {1,...,n} for some integers in N (resp. N).

6.
Let S be a countable set.

6.a If S is a countable set, show that any subset of S is also countable.

6.b Let A be a subset of S. Is it always true that if A is countable, then S must
necessarily be countable? Either prove the assertion or give a counter-example.

7.
Let S be a countable set that is finite as defined above. Show that if f : S — N and
g : S — N are two one-to-one mappings such that f(.5) has exactly ns elements and g(.5)
has exactly ny elements, then ny = ng4. In other words, the definition of the cardinality
of a finite set is well posed. In particular, it follows that we can always think of the finite
set S has being enumerated as {a1,...,a,} where ay, ..., a, are the distinct elements of

S

8.
Assume the two sets A and B to be equipotent.

8.a Show that A is finite if and only if B is finite.

8.b Show that A is countably infinite if and only if B is countably infinite.
8.c Show that A is uncountable if and only if B is uncountable.
9

A set S has the following property: There exist one-to-one mappings g : N — A and
h : A — N. Show that A is countably infinite.
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10.

Ninety students, including Joe and Jane, are to be split into three classes of equal size.
How often do Joe and Jane end up in the same class?




