
ENGINEERING PROBABILITY

HOMEWORK # 1: Posted on 01/24/2018

Please work out the (10) problems stated below – BT refers to the text: D.P. Bertsekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Scientific (2008). Problem 1.55 (BT) refers to Problem 55 for Chapter 1 of BT (to be found at the end of Chapter 1). Answers to the problems in BT can be found at <http://www.athenasc.com/probbook.html>.

1. _____

Let S be a set. For arbitrary subsets A and B of S , show the following versions of the De Morgan's Laws:

$$(A \cup B)^c = A^c \cap B^c \quad \text{and} \quad (A \cap B)^c = A^c \cup B^c.$$

2. _____

Problem 1.2 (BT)

3. _____

Problem 1.3 (BT)

4. _____

Problem 1.4 (BT)

With A and B being sets, recall that a mapping $g : A \rightarrow B$ is said to be

- *one-to-one* if $g(a) = g(a')$ with a and a' in A , then $a = a'$ necessarily. A one-to-one mapping is also called an *injective* mapping.
- *onto* if for every b in B there exists at least one element a in A such that $b = g(a)$
– In particular, $g(A) = B$ where $g(A) \equiv \{g(a) : a \in A\}$. A mapping that is onto is also called a *surjective* mapping.
- *bijective* (or is a *bijection*) if it is both injective and surjective, or equivalently, one-to-one and onto.

Recall that a set S is *countable* if there exists a one-to-one mapping $f : S \rightarrow \mathbb{N}$ – There may exist many such mappings. Countable sets come in two distinct flavors:

- The set S is *finite* if there exists a positive integer n in \mathbb{N} such that the subset $f(S) \equiv \{f(x) : x \in S\}$ of \mathbb{N} has exactly n (distinct) elements. In that case we say that its *cardinality* is n , and we write $|S| = n$.
- The set S is said to be *countably infinite* if for any one-to-one mapping $f : S \rightarrow \mathbb{N}$, there exists no positive integer n such that $f(S)$ has exactly n (distinct) elements. In that case we say that its cardinality is \aleph_0 (pronounced Aleph zero), and we write $|S| = \aleph_0$.

A set S that is not countable is said to be *uncountable*.

5. _____

First a definition: Two sets A and B are said to be *equipotent* if there exists a bijection $g : A \rightarrow B$.

Show that a set S is finite (resp. countably infinite) if and only if it is equipotent with the set $\{1, \dots, n\}$ for some integers in \mathbb{N} (resp. \mathbb{N}).

6. _____

Let S be a countable set.

6.a If S is a countable set, show that any subset of S is also countable.

6.b Let A be a subset of S . Is it always true that if A is countable, then S must necessarily be countable? Either prove the assertion or give a counter-example.

7. _____

Let S be a countable set that is finite as defined above. Show that if $f : S \rightarrow \mathbb{N}$ and $g : S \rightarrow \mathbb{N}$ are two one-to-one mappings such that $f(S)$ has exactly n_f elements and $g(S)$ has exactly n_g elements, then $n_f = n_g$. In other words, the definition of the cardinality of a finite set is well posed. In particular, it follows that we can always think of the finite set S has being enumerated as $\{a_1, \dots, a_n\}$ where a_1, \dots, a_n are the distinct elements of S .

8. _____

Assume the two sets A and B to be equipotent.

8.a Show that A is finite if and only if B is finite.

8.b Show that A is countably infinite if and only if B is countably infinite.

8.c Show that A is uncountable if and only if B is uncountable.

9. _____

A set S has the following property: There exist one-to-one mappings $g : \mathbb{N} \rightarrow A$ and $h : A \rightarrow \mathbb{N}$. Show that A is countably infinite.

10. _____

Ninety students, including Joe and Jane, are to be split into three classes of equal size. How often do Joe and Jane end up in the same class?
