

ENGINEERING PROBABILITY

HOMEWORK # 11:
Posted on 04/11/2018

Please work out the **ten** (10) problems stated below – BT refers to the text: D.P. Bertsekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Scientific (2008). Problem **1.55** (BT) refers to Problem 55 for Chapter 1 of BT (to be found at the end of Chapter 1). **Show** work and **explain** reasoning.

1. _____

Consider the function $f : \mathbb{R} \rightarrow \mathbb{R}$ given by

$$f(x) = \frac{1}{\pi} \left(\frac{1}{1+x^2} \right), \quad x \in \mathbb{R}.$$

1.a. Show that f is a probability density function (known as the Cauchy probability density function).

1.b. Find the corresponding cumulative distribution function $F : \mathbb{R} \rightarrow [0, 1]$ given by

$$F(x) = \int_{-\infty}^x f(t)dt, \quad x \in \mathbb{R}.$$

1.c. Can you evaluate the first moment of this probability distribution? Explain your answer.

2. _____

The standard Gaussian probability density function $\phi : \mathbb{R} \rightarrow \mathbb{R}_+$ is given by

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

Use the fact that $\phi : \mathbb{R} \rightarrow \mathbb{R}_+$ is a probability density function to compute the integrals

$$I(a, b) = \int_{\mathbb{R}} e^{-(a^2x^2+bx)} dx$$

with $a > 0$ and b in \mathbb{R} . **HINT:** Complete the square in the quadratic form $a^2x^2 + bx$!

3.

The rv $X : \Omega \rightarrow \mathbb{R}$ has cumulative distribution function given by

$$\mathbb{P}[X \leq x] = \begin{cases} 0 & \text{if } x \leq 0 \\ \frac{x}{1+x} & \text{if } x > 0. \end{cases}$$

3.a. Find the probability density function of the rv X .

3.b. Compute $\mathbb{P}[2 < X < 3]$.

3.c. Evaluate the quantity

$$\mathbb{E}[(1+X)^2 e^{-2X}].$$

4.

Consider rvs $X_1, \dots, X_d : \Omega \rightarrow \mathbb{R}$ all defined on some probability triple $(\Omega, \mathcal{A}, \mathbb{P})$. Recall that we say that the rvs X_1, \dots, X_d are mutually independent if the conditions

$$\mathbb{P}[X_1 \in B_1, \dots, X_d \in B_d] = \prod_{i=1}^d \mathbb{P}[X_i \in B_i], \quad B_i \subseteq \mathbb{R}, \quad i = 1, \dots, d$$

simultaneously hold. It was argued that this definition is equivalent to the following seemingly weaker conditions

$$\mathbb{P}[X_1 \leq x_1, \dots, X_d \leq x_d] = \prod_{i=1}^d \mathbb{P}[X_i \leq x_i], \quad x_i \in \mathbb{R}, \quad i = 1, \dots, d$$

simultaneously hold.

4.a. If for each $i = 1, \dots, d$, the rvs X_i is of continuous type with probability density function $f_i : \mathbb{R} \rightarrow \mathbb{R}_+$, then show that the mutual independence of the rvs X_1, \dots, X_d implies that the rv $(X_1, \dots, X_d) : \Omega \rightarrow \mathbb{R}^d$ is also of continuous type, and that its probability density function $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ is given by

$$f(x_1, \dots, x_d) = \prod_{i=1}^d f_i(x_i), \quad \begin{matrix} x_i \in \mathbb{R} \\ i = 1, \dots, n. \end{matrix}$$

4.b. Conversely, assume that the rv $(X_1, \dots, X_d) : \Omega \rightarrow \mathbb{R}^d$ is of continuous type, and that its probability density function $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ is of the form

$$f(x_1, \dots, x_d) = \prod_{i=1}^d f_i(x_i), \quad \begin{matrix} x_i \in \mathbb{R} \\ i = 1, \dots, n \end{matrix}$$

for some mappings $f_1, \dots, f_d : \mathbb{R}^d \rightarrow \mathbb{R}_+$. Under these assumptions, show that the rvs X_1, \dots, X_d are mutually independent and that each of these rvs is of continuous type with probability density functions $f_1, \dots, f_d : \mathbb{R} \rightarrow \mathbb{R}_+$.

5. _____

Problem 3.5 (BT)

6. _____

Problem 3.6 (BT)

7. _____

Problem 3.7 (BT)

8. _____

Problem 3.8 (BT)

9. _____

You are told that the rv $X : \Omega \rightarrow \mathbb{R}$ is a Gaussian rv with parameters $m \in \mathbb{R}$ and $\sigma^2 > 0$.9.a. For $a \neq 0$ and b arbitrary, show that the rv $Y = aX + b$ is also a Gaussian rv and find its probability density function – The case $a > 0$ was already discussed in class.9.b. Find x in \mathbb{R} such that

$$\begin{aligned}\mathbb{P}[X \geq x] &= .95 && \text{if } m = 1 \text{ and } \sigma = 2 \\ \mathbb{P}[X \geq x] &= .0068 && \text{if } m = 6 \text{ and } \sigma = 3 \\ \mathbb{P}[X > x] &= 3\mathbb{P}[X \leq x] && \text{if } m = 2 \text{ and } \sigma = 3 \\ \mathbb{P}[|X| \geq x] &= .0076 && \text{if } m = 0 \text{ and } \sigma = 1\end{aligned}$$

10. _____

The two-dimensional rv $(X, Y) : \Omega \rightarrow \mathbb{R}^2$ is uniformly distributed over the region $S \subseteq \mathbb{R}^2$. Define the rv $R = \sqrt{X^2 + Y^2}$ which gives the distance from the origin $(0, 0)$ to the random point (X, Y) .10.a. Assume first that the region S is the the circular region

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq R^2\}.$$

Find the cumulative distribution function F_R of the rv R and its probability distribution function f_R (if applicable). Is it a well-known distribution?10.b. Repeat Part a when S is the circle

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = R^2\}.$$
