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ENGINEERING PROBABILITY

HOMEWORK # 14:
Posted on 05/02/2018

Please work out the ten (10) problems stated below – BT refers to the text: D.P. Bert-
sekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Scientific
(2008). Problem 1.55 (BT) refers to Problem 55 for Chapter 1 of BT (to be found at
the end of Chapter 1). Show work and explain reasoning.

1.
Let U,U1, . . . , Un be i.i.d. rvs Ω → R, each of which is uniformly distributed over the
unit interval (0, 1).

1.a. Compute the probability P [U1 ≤ U, . . . , Un ≤ U ].

1.b. Are the rvs 1 [U1 ≤ U ] , . . . ,1 [Un ≤ U ] mutually independent?

1.b. Evaluate the probabilities

P

[∑
`=1

1 [U` ≤ U ] = x

]
, x = 0, 1, . . . , n

[HINT: Do these probabilities depend on x? Explain]

2.
Problem 4.44 (BT)

3.
It is known that the rv N is a conditionally Poisson rv given the rv Λ, i.e.,

P [N = k|Λ = t] =
tk

k!
e−t,

k = 0, 1, . . .
t ≥ 0

where the rv Λ is exponentially distributed with parameter λ > 0.

3.a. Compute the pmf of the rv N and identify this pmf.

3.b. For each k = 0, 1, . . ., find the conditional pdf of Λ given N = k. Is this the pdf of
a well-known distribution?

3.c. Evaluate the moment E [NΛ].
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4.
The joint probability distribution of the two rvs X and Y admits the probability density
function f : R2 → R+ given by

f(x, y) =


x+ y if 0 < x, y < 1

0 otherwise.

4.a. Find the probability density functions fX , fY : R→ R+ of the rvs X and Y .

4.b. Are the rvs X and Y independent? Explain.

4.c. Evaluate the probability
P [X + Y ≤ t]

for t in the range 0 < t ≤ 1.

4.d. Compute E [X], Var[X] and Cov[X, Y ].

5.
Let {X,Xk, k = 1, 2, . . .} denote a collection of i.i.d. rvs defined on the same probability
triple. Consider the rvs {Yk, k = 1, 2, . . .} defined by

Yk = Xk+1 −Xk, k = 1, 2, . . .

For each n = 1, 2, . . ., write

an = P [X1 + . . .+Xn > 0]

and
bn = P [Y1 + . . .+ Yn > 0] .

5.a. Under the Gaussian assumption X ∼ N(0, 1), evaluate the probabilities an (5 pts.),
and bn for each n = 1, 2, . . ..

5.b. With no distributional assumption on X other than E [X] = 0 and E [|X|2] = 1,
find the limit

lim
n→∞

P [X1 + . . .+Xn > 0] ,

and use it to design an approximation to the probability

P [X1 + . . .+Xn > 0]

when n is large. Explain your arguments carefully!

5.c. With no distributional assumption on X other than E [X] = 0 and E [|X|2] = 1,
find the limit

lim
n→∞

P [Y1 + . . .+ Yn > 0] .

Is this limiting value the same as the one obtained in Part 5.b? Explain your arguments
carefully!
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6.
Throughout M and L are integers with M ≥ and L ≥ 2. A box contains M distinct
coins,1 labelled 1, . . . ,M , with coin m selected with probability am. Once a coin is
selected and taken out of the box, it is tossed L times in succession under identical and
independent conditions. If coin m had been selected, each toss would yield head (resp.
tail) with probability pm.

6.a. Construct a probability space to model this situation – Specify the sample space,
the σ-field and the probability assignment explicitly.

6.b. With ` = 1, . . . , L, let E` denote the event that head is obtained in the `th toss of
the selected coin. Are the events E1, . . . , EL mutually independent? Carefully explain
your answer.

6.c. After the coin has been selected and taken out of the box, you watch the first coin
toss. What is the posterior probability that coin m was selected if you observe a head
after the first toss?

6.d. You walk away as the second coin toss is about to take place, but being the insatiably
curious individual that you are, your mind wonders: What is the probability that this
second coin toss also yields a head?

7.
The following setting occurs in the context of Queueing Theory: The rv N counts the
number of arrivals to a service facility over some interval of time of random duration X.
The theory stipulates that (i) the rv N is a geometric rv with parameter ρ, namely

P [N = n] = (1− ρ)ρn−1, n = 1, 2, . . .

for some ρ in (0, 1), and that (ii) for each n = 1, 2, . . ., the conditional distribution of the
rv X given N = n admits a density given by

fX|N(t|n) = λ
(λt)n−1

(n− 1)!
e−λt, t ≥ 0.

7.a. Compute the probability density function fX : R+ → R of the rv X. Is it a well
known distribution?

7.b. For each t > 0, determine the conditional probability mass function of N given
X = t, namely

P [N = n|X = t] , n = 1, 2, . . .

Is this conditional pmf related to a well-known pmf? If so, which one?

7.c. Use Parts 7.a and 7.b to compute E [XN ] explicitly.

8.
Given are scalars a, b and c in R such that a > 0, c > 0 and b2 < ac. It is determined that

1The coins may have different weights, may be made of different alloys, etc.
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the rvs X and Y are jointly continuous with probability density function fX,Y : R2 → R
of the form

fX,Y (x, y) = Γe−(ax2−2bxy+cy2), x, y ∈ R

for some Γ > 0.

8.a. Determine the value of Γ in terms of a, b and c.

8.b. Determine the probability distribution of the rv Y .

8.c. For every y in R, determine the conditional probability distribution of X given
Y = y.

8.d. Evaluate E [X] and E [Y ].

8.e. Evaluate E [XY ],

9.
The rv Λ is exponentially distributed with parameter λ > 0. You are being told that the
discrete rv X is conditionally Poisson with parameter Λ, i.e., for each t > 0,

P [X = x|Λ = t] =
tx

x!
e−t, x = 0, 1, . . .

9.a. Find the unconditional pmf of X, i.e., compute2

P [X = x] , x = 0, 1, . . .

Is this a well-known distribution?

9.b. With x = 0, 1, . . ., find the conditional distribution of Λ given X = x.

9.c. Evaluate

E
[
e−aXΛ|X = x

]
,

a > 0
x = 0, 1, . . .

10.
Let X and Y be two independent rvs. Assume that the rvs X and Y are exponentially
distributed with parameter λ > 0 and µ > 0, respectively. A new rv R is now defined as

R =


√
X√

X+
√
Y

if X > 0 and Y > 0

0 otherwise.

10.a. Compute the cumulative distribution function of R, namely

P [R ≤ r] , r ∈ R.

10.b. Is the rv R a continuous rv? If so, determine its probability density function
fR : R→ R+.

2HINT: Recall that
∫∞
0

tne−tdt = n! for each n = 0, 1, . . ..
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In what follows assume that we are in the symmetric case, namely λ = µ.

10.c. Explain why E [R] = 1
2
.

10.d. Use Part 10.c to compute the covariance

Cov
[
R,
√
X +

√
Y
]
.


