
ENGINEERING PROBABILITY

HOMEWORK # 6: Posted on 02/28/2018

Please work out the **ten** (10) problems stated below – BT refers to the text: D.P. Bertsekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Scientific (2008). Problem **1.55** (BT) refers to Problem 55 for Chapter 1 of BT (to be found at the end of Chapter 1). **Show** work and **explain** reasoning.

1. _____

Problem **2.1** (BT)

2. _____

Problem **2.2** (BT) – A well known problem!

3. _____

Problem **2.3** (BT)

4. _____

Problem **2.6** (BT)

5. _____

Problem **2.7** (BT)

6. _____

Problem **2.13** (BT)

7. _____

Problem **2.14** (BT)

8. _____

Problem **2.15** (BT)

9. _____

With a and b integers with $a \leq b$, define the uniform pmf on the integer interval $\{a, a = 1, \dots, b-1, b\}$ by

$$p_{a,b}(x) = \frac{1}{b-a+1}, \quad x = a, a+1, \dots, b-1, b.$$

Give a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a rv $X : \Omega \rightarrow \mathbb{R}$ such that X has pmf $\{p_{a,b}(x), x = a, a+1, \dots, b-1, b\}$ under \mathbb{P} .

10. _____

In this problem N is a positive integer. Consider the following experiment \mathcal{E} involving Alice and Bob: Alice selects a subset A_1 (possibly empty) at random from the collection of all subsets of the set $\{1, 2, \dots, N\}$. This takes place in Los Angeles at 12:00 noon on October 17, 2013. At exactly that moment, independently of Alice, while at lunch in New York City, Bob selects a subset A_2 (possibly empty) at random from the collection of all subsets of the set $\{N, N+1, N+2, \dots, 2N-1\}$.

10.a. Argue for a probability model that describes this situation. Describe *explicitly* an outcome ω , the sample space Ω , the collection \mathcal{A} of events and the probability assignment \mathbb{P} .

10.b. Compute the probability that N belongs to A_2 .

10.c. Compute the probability that the sets A_1 and A_2 do not intersect.
