

ENGINEERING PROBABILITY

HOMEWORK # 9:
Posted on 03/28/2018

Please work out the **ten** (10) problems stated below – BT refers to the text: D.P. Bertsekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Scientific (2008). Problem **1.55** (BT) refers to Problem 55 for Chapter 1 of BT (to be found at the end of Chapter 1). **Show** work and **explain** reasoning.

1. _____
Consider a discrete rv $X : \Omega \rightarrow \mathbb{R}$ with support $S = \mathbb{N}$ such that $\mathbb{P}[X = x] > 0$ for each $x = 0, 1, \dots$

1.a. For each $t = 0, 1, \dots$, compute the conditional probabilities

$$\mathbb{P}[(X - t)^+ = x | X \geq t], \quad x = 0, 1, \dots$$

1.b. Is it possible to find a pmf for the rv X (with support $S = \mathbb{N}$) so that we simultaneously have

$$\mathbb{P}[(X - t)^+ = x | X \geq t] = \mathbb{P}[X = x], \quad \begin{matrix} x = 0, 1, \dots \\ t = 0, 1, \dots \end{matrix}$$

2. _____
We start with two independent rvs $X, Y : \Omega \rightarrow \mathbb{R}$ which are discrete and whose supports are contained in \mathbb{N} . If X is a Binomial rv $\text{Bin}(n; a)$ and Y is a Binomial rv $\text{Bin}(m; a)$ for arbitrary positive integers n and m with $0 < a < 1$,

2.a. Find the pmf of the rv $X + Y$.

2.b. Evaluate the conditional expectation $\mathbb{E}[X | X + Y = z]$ for each $z = 0, 1, \dots, n + m$.

3. _____
The rvs $X_1, \dots, X_n : \Omega \rightarrow \mathbb{R}$ are mutually independent *geometric* rvs on \mathbb{N} (not on \mathbb{N}_0), say

$$\mathbb{P}[X_k = x] = a_k(1 - a_k)^x, \quad \begin{matrix} x = 0, 1, \dots \\ k = 1, \dots, n \end{matrix}$$

with arbitrary parameters $0 < a_1, \dots, a_n < 1$.

3.a. Compute the probability

$$\mathbb{P}[X_1 = X_2 = \dots = X_n].$$

3.b. If $a_1 = \dots = a_n \equiv a$, what happens to $\mathbb{P}[X_1 = X_2 = \dots = X_n]$ when n becomes large? Does it match your intuition?

4. _____

Consider a discrete rv $X : \Omega \rightarrow \mathbb{R}$ with support contained in \mathbb{N} .

4.a. Show that its expectation $\mathbb{E}[X]$ can also be computed by using the expression

$$\mathbb{E}[X] = \sum_{x=0}^{\infty} \mathbb{P}[X > n].$$

4.b. Use Part a to evaluate $\mathbb{E}[X]$ when X has a *geometric* pmf on \mathbb{N} – The calculations are a lot simpler than the ones carried out using the direct approach!

5. _____

Without calculations explain why the variance $\text{Var}[X]$ of a Binomial rv $\text{Bin}(n; p)$ is given by $np(1 - p)$ with positive integer n and $0 < p < 1$.

6. _____

With rvs $X_1, \dots, X_n : \Omega \rightarrow \mathbb{R}$, we associate the rvs $X^*, X_* : \Omega \rightarrow \mathbb{R}$ given by

$$X^* \equiv \max(X_1, \dots, X_n) \quad \text{and} \quad X_* \equiv \min(X_1, \dots, X_n).$$

Assume that the rvs X_1, \dots, X_n are discrete rvs which are independent and identically distributed with common pmf $\{p(x), x \in S\}$ supported on the countable set $S \subseteq \mathbb{R}$, i.e.,

$$\mathbb{P}[X_i = x] = p(x), \quad \begin{array}{c} x \in S \\ i = 1, \dots, n. \end{array}$$

6.a. Find the pmf of each of the discrete rvs X^* and X_* .

6.b. Apply the results to Part a to the situation when the common pmf is the geometric pmf on \mathbb{N} given by

$$p(x) = a(1 - a)^x, \quad x = 0, 1, \dots$$

with $0 < a < 1$. Do you notice anything interesting?

7. _____

In this problem we consider evaluating $\mathbb{E}\left[\frac{1}{1+X}\right]$ when the rv $X : \Omega \rightarrow \mathbb{R}$ is a discrete rv with support contained in \mathbb{N} . Do the calculations when

7.a. the rv X is a Binomial rv $\text{Bin}(n; p)$ with positive integer n and $0 < p < 1$.

7.b. the rv X is a Poisson rv $\text{Poi}(\lambda)$ with $\lambda > 0$.

8. _____

Consider the following setting: The $n+1$ discrete rvs $X_1, \dots, X_n, \nu : \Omega \rightarrow \mathbb{R}$ are mutually independent rvs. We shall assume that the rvs X_1, \dots, X_n are discrete rvs which are independent and identically distributed with common pmf $\{p(x), x \in S\}$ supported on the countable set $S \subseteq \mathbb{R}$, i.e.,

$$\mathbb{P}[X_i = x] = p(x), \quad x \in S, \quad i = 1, \dots, n.$$

Moreover, the rv ν is a discrete rv with support $\{0, 1, \dots, N\}$ for some positive integer N . We shall assume that the (common) expectation of the rvs X_1, \dots, X_n is finite.

Show that that the expression

$$\mathbb{E} \left[\sum_{k=1}^{\nu} X_i \right] = \mathbb{E}[\nu] \mathbb{E}[X_1]$$

holds; this formula is known as Wald's identity.

9. _____

Let X and Y be two independent rvs which are uniformly distributed on the set of integers $\{0, \dots, 9\}$, i.e.,

$$\mathbb{P}[X = x] = \mathbb{P}[Y = y] = \frac{1}{10}, \quad x, y = 0, \dots, 9.$$

You are told that their sum $X + Y$ is of the form

$$X + Y = \xi \cdot 10 + \eta$$

where ξ and η are discrete rvs taking values in $\{0, \dots, 9\}$, i.e.,

$$\mathbb{P}[\xi \in \{0, \dots, 9\}] = \mathbb{P}[\eta \in \{0, \dots, 9\}] = 1.$$

9.a. Explain how you would go about computing the probabilities

$$\mathbb{P}[\xi = x, \eta = y], \quad x, y = 0, \dots, 9.$$

9.b. Compute the probabilities

$$\mathbb{P}[\xi = 0, \eta = 0], \quad \mathbb{P}[\eta = 0] \text{ and } \mathbb{P}[\xi = 0].$$

What can you say about the independence of the rvs ξ and η ?

10. _____

A point X is picked uniformly at random from the set of integers $\{0, \dots, \nu\}$ for some positive integer ν which is itself selected uniformly at random from the set $\{1, \dots, N\}$ for some positive integer N . Thus,

$$\mathbb{P}[\nu = k] = \frac{1}{N}, \quad k = 1, 2, \dots, N.$$

10.a. Find the probabilities

$$\mathbb{P} [\nu = k | X < j], \quad \begin{matrix} k = 1, 2, \dots, N \\ j = 1, \dots, N \end{matrix}$$

10.b. Compute

$$\mathbb{E} [\nu = k | X < j], \quad j = 1, \dots, N$$

10.c. Compute $\mathbb{E} [X]$.
