ENEE 324 -01*
 SPRING 2018
 ENGINEERING PROBABILITY
 ANSWER KEY TO TEST \# 1:

1
a. A natural way to encode the outcome ω of this experiment is through the pair (Choice, Color) with

$$
\omega=(\text { Choice of urn }, \text { Color }) \in \Omega \equiv\{1,2,3\} \times\{\text { Red, Blue }\} .
$$

Obviously, $\mathcal{F}=\mathcal{P}(\Omega)$. Moreover, the random urn selection translates into

$$
\mathbb{P}[\text { Select urn } c]=\mathbb{P}[\{c\} \times\{\text { Red, Blue }\}]=\frac{1}{3}, \quad c=1,2,3 .
$$

Also, the statement of the problem yields

$$
\mathbb{P}[\text { A red ball is drawn } \mid \text { Select urn } c]=\frac{R_{c}}{R_{c}+B_{c}}, \quad c=1,2,3 .
$$

Note that $B_{3}=0$.
It follows that

$$
\begin{align*}
\mathbb{P}[\{c, \text { Red }\}] & =\mathbb{P}[[\text { Select urn } c] \cap[\text { A red ball is drawn }]] \\
& =\mathbb{P}[\text { A red ball is drawn } \mid \text { Select urn } c] \cdot \mathbb{P}[\text { Select urn } c] \\
& =\frac{1}{3} \cdot \frac{R_{c}}{R_{c}+B_{c}}, \quad c=1,2,3 . \tag{1.1}
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
\mathbb{P}[\{c, \text { Blue }\}] & =\mathbb{P}[\text { Select urn } c]-\mathbb{P}[\{c, \text { Red }\}] \\
& =\frac{1}{3}-\frac{1}{3} \cdot \frac{R_{c}}{R_{c}+B_{c}} \\
& =\frac{1}{3} \cdot \frac{B_{c}}{R_{c}+B_{c}}, \quad c=1,2,3 . \tag{1.2}
\end{align*}
$$

Thus, $\mathbb{P}[\{\omega\}]$ is specified for each ω in Ω !
b. We readily see that

$$
\begin{align*}
& \mathbb{P}\left[\text { Ball drawn selected from urn } U_{1} \mid \text { Ball drawn is red }\right] \\
= & \frac{\mathbb{P}\left[\text { Ball drawn selected from urn } U_{1}, \text { ball drawn is red }\right]}{\mathbb{P}[\text { Ball drawn is red }]} \\
= & \frac{\mathbb{P}[\{1, \text { Red }\}]}{\mathbb{P}[\{1, \text { Red }\}]+\mathbb{P}[\{2, \text { Red }\}+\mathbb{P}[\{3, \text { Red }\}]]} \\
= & \frac{\frac{1}{3} \cdot \frac{R_{1}}{R_{1}+B_{1}}}{\frac{1}{3} \cdot \frac{R_{1}}{R_{1}+B_{1}}+\frac{1}{3} \cdot \frac{R_{2}}{R_{2}+B_{2}}+\frac{1}{3} \cdot \frac{R_{3}}{R_{3}+B_{3}}} \\
= & \frac{\frac{R_{1}}{R_{1}+B_{1}}}{\frac{R_{1}}{R_{1}+B_{1}}+\frac{R_{2}}{R_{2}+B_{2}}+1} . \tag{1.3}
\end{align*}
$$

2
a. Note that

$$
\mathbb{P}[X=x]=\frac{1}{2 a+1}, \quad x=-a, \ldots,-1,0,1, \ldots a
$$

so that

$$
\mathbb{E}[X]=\sum_{x=-a}^{a} x \cdot \mathbb{P}[X=x]=\frac{1}{2 a+1} \sum_{x=-a}^{a} x=0
$$

by symmetry
b. Obviously, the rv Y is a discrete rv since $Y=g(X)$ with $g: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow|x|$ and the $\operatorname{rv} X$ is discrete! Its support is $\{0,1, \ldots, a\}$. First, since $Y=0$ if and only if $X=0$, we get

$$
\mathbb{P}[Y=0]=\mathbb{P}[X=0]=\frac{1}{2 a+1}
$$

and for $y=1, \ldots, a$, since $Y=y$ if and only if either $X=y$ or $X=-y$, we have

$$
\mathbb{P}[Y=y]=\mathbb{P}[X=-y]+\mathbb{P}[X=y]=\frac{2}{2 a+1}
$$

c. It follows that

$$
\begin{align*}
\mathbb{E}[Y] & =\sum_{y=0}^{a} y \cdot \mathbb{P}[Y=y] \\
& =\sum_{y=1}^{a} y \cdot \frac{2}{2 a+1} \\
& =\frac{2}{2 a+1} \cdot \sum_{y=1}^{a} y \\
& =\frac{2}{2 a+1} \cdot \frac{a(a+1)}{2}=\frac{a(a+1)}{2 a+1} . \tag{1.4}
\end{align*}
$$

c. Obviously $|\mathbb{E}[X]|=0$ while $\mathbb{E}[|X|]>0$!

3
a. Obviously

$$
\begin{align*}
\mathbb{P}[X=Y] & =\sum_{x=0}^{\infty} \mathbb{P}[X=Y, X=x] \\
& =\sum_{x=0}^{\infty} \mathbb{P}[X=x, Y=x] \\
& =\sum_{x=0}^{\infty} \mathbb{P}[X=x] \mathbb{P}[Y=x] \quad[\text { By the independence of the rvs } X \text { and } Y] \\
& =\sum_{x=0}^{\infty}(1-a)^{x} a \cdot(1-b)^{x} b \\
& =\frac{a b}{1-(1-a)(1-b)} \tag{1.5}
\end{align*}
$$

and we conclude that

$$
\begin{align*}
\mathbb{P}[X \neq Y] & =1-\mathbb{P}[X=Y] \\
& =1-\frac{a b}{1-(1-a)(1-b)} \\
& =\frac{a+b-2 a b}{1-(1-a)(1-b)}=\frac{a(1-b)+b(1-a)}{1-(1-a)(1-b)} . \tag{1.6}
\end{align*}
$$

b. We have

$$
\begin{align*}
\mathbb{E}[X] & =\sum_{x=0} x \cdot a(1-a)^{x} \\
& =(1-a)\left(\sum_{x=1} x \cdot a(1-a)^{x-1}\right) \\
& =\frac{1-a}{a} \tag{1.7}
\end{align*}
$$

as we identify $\sum_{x=1} x \cdot a(1-a)^{x-1}$ to be the expectation of the geometric pmf on \mathbb{N}_{0}, whose value was computed in class to be a^{-1}. In a similar way we have $\mathbb{E}[Y]=(1-b) b^{-1}$.
c. Finally, with mapping $g: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \rightarrow x y$, we have

$$
\begin{align*}
\mathbb{E}[X Y] & =\mathbb{E}[g(X, Y)] \\
& =\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} g(x, y) \mathbb{P}[X=x, Y=y] \\
& =\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} x y \cdot \mathbb{P}[X=x] \mathbb{P}[Y=y] \quad[\text { By the independence of the rvs } X \text { and } Y] \\
& =\sum_{x=0}^{\infty}\left(\sum_{y=0}^{\infty} y \cdot \mathbb{P}[Y=y]\right) x \cdot \mathbb{P}[X=x] \\
& =\mathbb{E}[X] \mathbb{E}[Y]=\frac{(1-a)(1-b)}{a b} \tag{1.8}
\end{align*}
$$

4.

a. Label the items in the shipment, say $1, \ldots, 50$, and take Ω to be the collection of all subsets of size 5 drawn from $\{1, \ldots, 50\}$ - Clearly the order does not matter and $|\Omega|=\binom{50}{5}$. We have $\mathcal{F}=\mathcal{P}(\Omega)$ and the probability assignment is the uniform probability assignement, so

$$
\mathbb{P}[\{\omega\}]=\frac{1}{\binom{50}{5}}, \quad \omega \in \Omega
$$

b. If the shipment contains five (5) defectives, then the shipment will be accepted if either the sample contains no defective item - There are $\binom{45}{5}$ such possibilities, or if the sample contains exactly one defective item - There are $5 \cdot\binom{45}{4}$ such possibilities. Therefore,

$$
p_{5}=\frac{\binom{45}{5}+5 \cdot\binom{45}{4}}{\binom{50}{5}}
$$

c. If the shipment contains fifteen (15) defectives, then the shipment will be accepted if either the sample contains no defective item - There are $\binom{35}{5}$ such possibilities, or if the sample contains exactly one defective item - There are $15 \cdot\binom{35}{4}$ such possibilities. Therefore,

$$
p_{15}=\frac{\binom{35}{5}+15 \cdot\binom{35}{4}}{\binom{50}{5}}
$$

