ENEE 324 -01*
 SPRING 2018
 ENGINEERING PROBABILITY

ANSWER KEY TO TEST \# 2:

1
a. Note that

$$
\begin{align*}
f_{X}(x) & =\int_{\mathbb{R}} f_{X, Y}(x, y) d y \\
& = \begin{cases}0 & \text { if } x<0 \\
\int_{x}^{\infty} 2 e^{-(x+y)} d y & \text { if } x \geq 0\end{cases} \\
& = \begin{cases}0 & \text { if } x<0 \\
2 e^{-2 x} & \text { if } x \geq 0\end{cases} \tag{1.1}
\end{align*}
$$

so $X \sim \operatorname{Exp}(2)$, while

$$
\begin{align*}
f_{Y}(y) & =\int_{\mathbb{R}} f_{X, Y}(x, y) d x \\
& = \begin{cases}0 & \text { if } y<0 \\
\int_{0}^{y} 2 e^{-(x+y)} d x & \text { if } y \geq 0\end{cases} \\
& = \begin{cases}0 & \text { if } y<0 \\
2 e^{-y}\left(1-e^{-y}\right) & \text { if } y \geq 0 .\end{cases} \tag{1.2}
\end{align*}
$$

b. Note that

$$
\mathbb{E}[X-Y]=\mathbb{E}[X]-\mathbb{E}[Y]=\frac{1}{2}-\mathbb{E}[Y]
$$

with

$$
\begin{align*}
\mathbb{E}[Y] & =\int_{0}^{\infty} y f_{Y}(y) d y \\
& =2 \int_{0}^{\infty} y e^{-y}\left(1-e^{-y}\right) d y \\
& =2 \int_{0}^{\infty} y e^{-y} d y-\int_{0}^{\infty} 2 y e^{-2 y} d y \\
& =2 \cdot 1-\frac{1}{2} \tag{1.3}
\end{align*}
$$

Therefore,

$$
\mathbb{E}[X-Y]=\frac{1}{2}-2+\frac{1}{2}=-1
$$

c. We need only consider the case $x \geq 0$, and on that range we have

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}= \begin{cases}0 & \text { if } y<x \\ \frac{2 e^{-(x+y)}}{2 e^{-2 x}}=e^{-(y-x)} & \text { if } x \leq y\end{cases}
$$

whence

$$
\mathbb{E}[Y \mid X=x]=\int_{x}^{\infty} y e^{-(y-x)} d y=e^{x} \cdot \int_{x}^{\infty} y e^{-y} d y, \quad x \geq 0 .
$$

Integration by parts gives

$$
\begin{align*}
\int_{x}^{\infty} y e^{-y} d y & =\int_{x}^{\infty} y\left(-e^{-y}\right)^{\prime} d y \\
& =\left(-y e^{-y}\right)_{x}^{\infty}+\int_{x}^{\infty} e^{-y} d y \\
& =x e^{-x}+e^{-x} \tag{1.4}
\end{align*}
$$

whence

$$
\mathbb{E}[Y \mid X=x]=1+x, \quad x \geq 0
$$

2.

Most of the arguments made here rely on the fact that

$$
\int_{\mathbb{R}} e^{-\frac{1}{2}\left(\frac{t-a}{\sigma}\right)^{2}} d t=\sqrt{2 \pi \sigma^{2}}, \quad \begin{array}{ll}
& a \in \mathbb{R} \\
& \sigma>0
\end{array}
$$

a. We have

$$
\begin{align*}
1 & =\int_{\mathbb{R}^{2}} f_{X, Y}(x, y) d x d y \\
& =A \int_{\mathbb{R}}\left(\int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{2}} d y\right) e^{-\frac{x^{2}}{2}} d x \\
& =A \int_{\mathbb{R}} \sqrt{2 \pi} e^{-\frac{x^{2}}{2}} d x \\
& =A(\sqrt{2 \pi})^{2} \quad \text { whence } A=\frac{1}{2 \pi} . \tag{1.5}
\end{align*}
$$

b. First,

$$
\begin{align*}
f_{X}(x) & =\int_{\mathbb{R}} f_{X, Y}(x, y) d y \\
& =A e^{-\frac{x^{2}}{2}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{2}} d y \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad x \in \mathbb{R} . \tag{1.6}
\end{align*}
$$

Similarly,

$$
\begin{align*}
f_{Y}(y) & =\int_{\mathbb{R}} f_{X, Y}(x, y) d x \\
& =A \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cdot e^{-\frac{(x-y)^{2}}{2}} d x, \quad y \in \mathbb{R} \tag{1.7}
\end{align*}
$$

with

$$
\begin{align*}
\frac{x^{2}}{2}+\frac{(x-y)^{2}}{2} & =\frac{1}{2}\left(x^{2}+x^{2}-2 x y+y^{2}\right) \\
& =\frac{1}{2}\left((\sqrt{2} x)^{2}-2(\sqrt{2} x) \frac{y}{\sqrt{2}}+y^{2}\right) \\
& =\frac{1}{2}\left(\left[\sqrt{2} x-\frac{y}{\sqrt{2}}\right]^{2}+\left[\frac{y}{\sqrt{2}}\right]^{2}\right) \\
& =\frac{1}{2}\left(2\left[x-\frac{y}{2}\right]^{2}+\left[\frac{y}{\sqrt{2}}\right]^{2}\right) \tag{1.8}
\end{align*}
$$

by a completion of squares argument. Thus,

$$
\begin{align*}
A \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cdot e^{-\frac{(x-y)^{2}}{2}} d x & =A \int_{\mathbb{R}} e^{-\frac{1}{2}\left(2\left[x-\frac{y}{2}\right]^{2}+\left[\frac{y}{\sqrt{2}}\right]^{2}\right)} d x \\
& =A e^{-\frac{y^{2}}{4}} \cdot \int_{\mathbb{R}} e^{-\frac{1}{2} \frac{\left(x-\frac{y}{2}\right)^{2}}{\frac{1}{2}}} d x \\
& =A e^{-\frac{y^{2}}{4}} \cdot \sqrt{2 \pi \cdot \frac{1}{2}} \tag{1.9}
\end{align*}
$$

whence

$$
f_{Y}(y)=\frac{1}{\sqrt{4 \pi}} e^{-y^{2}}, \quad y \in \mathbb{R}
$$

It follows that $X \sim \mathrm{~N}(0,1)$ and $Y \sim \mathrm{~N}(0,2)$.
c. Next, for each y in \mathbb{R}, it holds that

$$
\begin{align*}
f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
& =\frac{\frac{1}{2 \pi} e^{-\frac{x^{2}}{2}} \cdot e^{-\frac{(x-y)^{2}}{2}}}{\frac{1}{\sqrt{4 \pi}} e^{-\frac{1}{2}\left(\frac{y}{\sqrt{2}}\right)^{2}}} \\
& =\frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}(\ldots)}, \quad x \in \mathbb{R} \tag{1.10}
\end{align*}
$$

with

$$
\begin{align*}
\cdots & =x^{2}+(x-y)^{2}-\frac{y^{2}}{2} \\
& =2 x^{2}-2 x y+\frac{y^{2}}{2} \\
& =\left(\sqrt{2} x-\frac{y}{\sqrt{2}}\right)^{2} \\
& =2\left(x-\frac{y}{2}\right)^{2}, \quad x \in \mathbb{R} \tag{1.11}
\end{align*}
$$

Thus,

$$
f_{X \mid Y}(x \mid y)=\frac{1}{\sqrt{\pi}} e^{-\left(x-\frac{y}{2}\right)^{2}}, \quad x \in \mathbb{R}
$$

and it is now plain that the conditional distribution of X given that $Y=y$ is a normal distribution $\mathrm{N}\left(\frac{y}{2}, \frac{1}{2}\right)$.
d. This time we have

$$
\begin{align*}
f_{Y \mid X}(y \mid x) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\
& =\frac{\frac{1}{2 \pi} e^{-\frac{x^{2}}{2}} \cdot e^{-\frac{(x-y)^{2}}{2}}}{\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-y)^{2}}{2}} \tag{1.12}
\end{align*}
$$

and the conditional distribution of Y given that $X=x$ is a normal distribution $\mathrm{N}(x, 1)$, hence $\mathbb{E}[Y \mid X=x]=x$.
3.
a. Note that the conditional probability distribution of the rv X given $B=$ Head (resp. $B=$ Tail) coincides with that of U (resp. V). Thus, it holds that

$$
\begin{align*}
\mathbb{E}[X] & =\mathbb{E}[X \mid B=\text { Head }] \mathbb{P}[B=\text { Head }]+\mathbb{E}[X \mid B=\text { Tail }] \mathbb{P}[B=\text { Tail }] \\
& =\mathbb{E}[U] \mathbb{P}[B=\text { Head }]+\mathbb{E}[V] \mathbb{P}[B=\text { Tail }] \\
& =\frac{1}{2} p+0 \cdot(1-p)=\frac{p}{2} \tag{1.13}
\end{align*}
$$

b. With x in \mathbb{R}, we have

$$
\begin{align*}
& \mathbb{P}[B=\text { Head } \mid X=x] \\
& \\
& =\frac{f_{X \mid B}(x \mid \text { Head }) \mathbb{P}[B=\text { Head }]}{f_{X}(x)} \\
& \tag{1.14}\\
& =\frac{p f_{U}(x)}{p f_{U}(x)+(1-p) f_{V}(x)} \\
& \\
& = \begin{cases}0 & \text { if } x<0 \\
p+(1-p) \frac{1}{\sqrt{2 \pi} e^{-\frac{x^{2}}{2}}} & \text { if } 0 \leq x \leq 1 \\
0 & \text { if } 1<x\end{cases}
\end{align*}
$$

with an obvious notation.
c. We start with the observation that the rv X can be represented as

$$
\begin{align*}
X & =\mathbf{1}[B=\text { Head }] \cdot U+\mathbf{1}[B=\text { Tail }] \cdot V \\
& =B^{\star} \cdot U+\left(1-B^{\star}\right) \cdot V \tag{1.15}
\end{align*}
$$

with B^{\star} being the indicator rv $B^{\star}=\mathbf{1}[B=$ Head $]$ and $\mathbf{1}[B=$ Tail $]=1-B^{\star}$. Therefore, we get

$$
\begin{align*}
\operatorname{Cov}[X, U] & =\operatorname{Cov}\left[B^{\star} \cdot U+\left(1-B^{\star}\right) \cdot V, U\right] \\
& =\operatorname{Cov}\left[B^{\star} \cdot U, U\right]+\operatorname{Cov}\left[\left(1-B^{\star}\right) \cdot V, U\right] \tag{1.16}
\end{align*}
$$

The rvs B^{\star}, U and V being mutually independent,

$$
\begin{align*}
\operatorname{Cov}\left[B^{\star} \cdot U, U\right] & =\mathbb{E}\left[B^{\star} \cdot U^{2}\right]-\mathbb{E}\left[B^{\star} \cdot U\right] \mathbb{E}[U] \\
& =\mathbb{E}\left[B^{\star}\right] \mathbb{E}\left[U^{2}\right]-\mathbb{E}\left[B^{\star}\right] \mathbb{E}[U] \mathbb{E}[U] \\
& =p \operatorname{Var}[U] \tag{1.17}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Cov}\left[\left(1-B^{\star}\right) \cdot V, U\right] & =\mathbb{E}\left[\left(1-B^{\star}\right) \cdot U V\right]-\mathbb{E}\left[\left(1-B^{\star}\right) \cdot V\right] \mathbb{E}[U] \\
& =\mathbb{E}\left[1-B^{\star}\right] \mathbb{E}[U V]-\mathbb{E}\left[1-B^{\star}\right] \mathbb{E}[V] \mathbb{E}[U] \\
& =(1-p) \operatorname{Cov}[U, V]=0 \tag{1.18}
\end{align*}
$$

since the rvs U and V are independent (hence uncorrelated). Thus,

$$
\operatorname{Cov}[X, U]=p \operatorname{Var}[U]=p\left(\frac{1}{3}-\left(\frac{1}{2}\right)^{2}\right)=\frac{p}{12} \neq 0!
$$

and the rvs X and U are clearly correlated.
4.
a. The rvs X and Y are clearly independent since

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y), \quad x, y \in \mathbb{R}
$$

as we note that

$$
f_{X}(x)=\int_{\mathbb{R}} f_{X, Y}(x, y) d y= \begin{cases}x e^{-\frac{x^{2}}{2}} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and similarly,

$$
f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) d x= \begin{cases}y e^{-\frac{y^{2}}{2}} & \text { if } y \geq 0 \\ 0 & \text { if } y<0\end{cases}
$$

b. Obviously, since $\left(x e^{-\frac{x^{2}}{2}}\right)=\left(-e^{-\frac{x^{2}}{2}}\right)^{\prime}$, we get

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(\xi) d \xi= \begin{cases}0 & \text { if } x<0 \tag{1.19}\\ 1-e^{-\frac{x^{2}}{2}} & \text { if } x \geq 0\end{cases}
$$

and

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{X}(\eta) d \eta= \begin{cases}0 & \text { if } y<0 \tag{1.20}\\ 1-e^{-\frac{y^{2}}{2}} & \text { if } y \geq 0\end{cases}
$$

c. Finally, with $r>0$, we have

$$
\begin{align*}
\mathbb{P}[R \leq r] & =\mathbb{P}\left[Y>0, \frac{X}{Y} \leq r\right]+\mathbb{P}\left[Y \leq 0, \frac{X}{Y} \leq r\right] \\
& =\mathbb{P}[Y>0, X \leq r Y] \\
& =\mathbb{E}[\mathbb{E}[\mathbf{1}[Y>0] \mathbf{1}[X \leq r Y] \mid Y]] \\
& =\mathbb{E}\left[(\mathbb{E}[\mathbf{1}[Y>0] \mathbf{1}[X \leq r Y] \mid Y=y])_{y=Y}\right] \\
& =\mathbb{E}\left[(\mathbb{E}[\mathbf{1}[y>0] \mathbf{1}[X \leq r y] \mid Y=y])_{y=Y}\right] \\
& =\mathbb{E}\left[\mathbf{1}[Y>0](\mathbb{E}[\mathbf{1}[X \leq r y] \mid Y=y])_{y=Y}\right] \\
& =\mathbb{E}\left[\mathbf{1}[Y>0](\mathbb{E}[\mathbf{1}[X \leq r y]])_{y=Y}\right] \\
& =\mathbb{E}\left[\mathbf{1}[Y>0] \mathbb{P}[X \leq r y]_{y=Y}\right] \\
& =\mathbb{E}\left[\mathbf{1}[Y>0]\left(1-e^{-\frac{r^{2} Y^{2}}{2}}\right)\right] \\
& =\int_{0}^{\infty}\left(1-e^{-\frac{r^{2} \eta^{2}}{2}}\right) \eta e^{-\frac{\eta^{2}}{2}} d \eta \\
& =1-\int_{0}^{\infty} \eta e^{-\frac{\left(1+r^{2}\right)^{2}}{2}} d \eta \\
& =1-\frac{1}{1+r^{2}}, \quad r \geq 0 . \tag{1.21}
\end{align*}
$$

A second solution:

$$
\begin{align*}
\mathbb{P}[R \leq r] & =\mathbb{P}[Y>0, X \leq r Y] \\
& =\int_{\left\{(x, y) \in \mathbb{R}_{+}^{2}: x \leq r y\right\}} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{0}^{\infty}\left(\int_{0}^{r y} f_{X}(y) d x\right) f_{Y}(y) d y \\
& =\int_{0}^{\infty}\left(1-e^{-\frac{r^{2} y^{2}}{2}}\right) f_{Y}(y) d y \\
& =1-\frac{1}{1+r^{2}}, \quad r \geq 0 \tag{1.22}
\end{align*}
$$

ENEE 324-01*/SPRING 2018

