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PROBABILITY: a bit of etymology

Wahr -true, genuine
Wahrhaft - truthful, true

Wahrhaftigkeit - truthfulness

Wahrheit - truth, fact

Wahrnehmen - to perceive, observe, notice
Wahrnehmung - perception

Wahrsagen - to prophesy, tell fortunes
Wahrsager -

Wahrsagerin - soothsayer, fortune-teller
Wahrsagung - prophecy

Wahrscheinlich - probable, probably
Wahrscheinlichkeit - probability
Wahrscheinspruch - verdict

Wahrscheinlichkeitstheorie - probability theory

— Collins Gem German-FEnglish Dictionary



ENEE 324 Engineering Probability Lecture 1

Basic Concepts

This is a course on modeling uncertainty. Uncertainty is all about us —
the outcome of a coin toss, the life-time of an electric light bulb, Nyquist-
Johnson fluctuations in the measured value of current through a resistor
connected to a heat bath, the chance of rain at noon on a weekday, are all
valid examples of uncertain/chance/random phenomena. Yet, through study
of specific contexts, and by carrying out carefully repeated experiments, it
is possible to get a handle on uncertainty, sufficiently to be able to make
useful predictions. A great deal of science and engineering is concerned with
making predictions in the face of uncertainty. Probability theory provides
the language, the techniques, and as a consequence the mathematical models
that enable us to do this.

There are other ways to approach uncertainty, but probability theory is
quite possibly the most wide-ranging and successful means to do this. Prob-
ability theory offers a coherent conceptual system to understand and cope
with uncertainty.

Modern technology makes extensive use of probability theory. Some ex-
amples include: (a) algorithms used to route messages/data in a communica-
tion/computing network; (b) techniques used to project the yield in accept-
able quality silicon wafers in a semiconductor manufacturing plant; (¢) the
error-correcting codes used in compact disc players; (d) performance analysis
and design of a service system using the theory of queues (waiting lines).

Everyday use of the language of probability is based on built-up intu-
ition that people have. Sometimes such intuition can prove unreliable or ill-
defined. One can build correct intuition by solving certain “toy problems”,
such as card-shuffling. It is useful and advisable to develop a systematic
approach to probability. In particular, the models of probability have to be
tested for “consistency” against data (observed in experiments).



Often, costly and sensitive decision-making processes depend on proba-
bility models. Some examples: (a) the decision by a “wild-catter” to drill or
not to drill for oil in a particular parcel of optioned land; (b) the decision to
launch a space-shuttle based on forecasts of weather patterns; (c¢) the deci-
sion to attempt circum-navigation of the globe in a hot-air balloon; (d) the
decision to attempt maiden voyage of a grand ocean liner in sea-lanes known
to be populated by ice-bergs. The risks involved in such decision processes
must be quantified so that an experienced and competent human can make
rational choices. Lloyd’s of London quantifies such risks all the time. How?
The answer lies in probabilistic concepts.

Probability can also be used to answer (approximately) questions in fields
where one normally does not expect to have to deal with uncertainty. An
example of this is the Buffon’s needle problem: suppose a needle is “tossed at
random” onto a plane ruled with parallel lines a distance L apart, where by
a “needle” we mean a line segment of length [ < L. What is the probability
of the needle intersecting one of the parallel lines?

We present a systematic approach to this important subject by beginning
with fundamental concepts.

Very often, one thinks of a problem involving uncertainty as being asso-
ciated to an ezperiment £. 1If £ is repeatable, so much the better. There is
a whole school of thought, that insists on attaching probabilities only to re-
peatable experiments, known as the frequentists. Yet, there are problems in-
volving uncertainty where no natural experiments can be suggested to model
or deduce the uncertainty. For instance, despite having a large body of solid
geophysical knowledge and experience, a geophysicist, when called upon to
offer what he/she thinks of as the “likelihood” of a cataclysmic earthquake
on the eastern sea-board by the year 2000, may appear to “pick a percentage
out of the hat”. What is going on here is that the number offered is a measure
of the scientist’s conviction — an example of subjective probability. (There is
a history of raging arguments between subjectivists and frequentists. After
all, is it not the goal of science to be objective and stamp out all that carries
the taint of prejudice/subjectivity? We will meet on our journey, represen-
tatives of both camps,—Richard von Mises, Bruno de Finetti, John Maynard
Keynes, Leonard Savage, Ronald A. Fisher,...). Whether the probabilities
that we discuss below are based on (repeatable) experiments or based on an
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expert’s conviction, the rules for working with probabilities are the same.
These rules serve as a foundation for mathematical modeling of uncertainty.
At a fundamental level, these are based on the language of set theory and
Boolean algebra.

First, we need a set (2, called the sample space. The elements of this
set are the (exhaustive list of) possible outcomes of an experiment £. With
reference to £, we will have the notion that ) is a universal set, i.e., all
possible outcomes of £ are accounted for in €.

Examples

(i) £ = single coin toss, Q= {H,T}

(ii) £ = roll of a single die, 2 =1{1,2,3,4,5,6}

(ili) £ = coin toss until a first head, Q@ = {H,TH,TTH, ...}

(iv) &€ = mark a random dot on a ruler of length L. Here we take

Q =10, L]

(Note, this is an easy experiment to repeat and there are different ways to
repeat it, either via independent trials or dependent trials.)

(v) €& = survey of all computers that are up or down at 11:00 a.m. Here (2
can be taken as simply a list of all IP addresses with a tag UP or DOWN
In example (i) and (ii) the sample space €2 is a finite set. In (v) it is finite
but large (in Maryland campus)! In (iii) it is countably infinite. In (iv) it
is uncountably infinite. In the beginning we will concentrate on situations
wherein € is finite or countably infinite (a discrete sample space).

An event A (associated to an experiment) is simply a set of possible outcomes,
i.e. a subset of €. The collection of all possible events is denoted as 2 and
is called the power set of 2.

Examples (associated to above experiments)

(i) head occurs: A= {H}

(i) even number occurs: A = {2,4,6}

(iii) first head occurs in at most 3 tosses: A ={H,TH,TTH}

5



(iv) mark within halfway point: A = [0,0.5L]

(v) only one computer is down: A = {uy ds ug, dy us ug, ...}

Events cannot be discussed in isolation. Thus if the event A occured, then
event A°, the complement of A, did not occur. Thus we are also thinking
about A° even as we speak of A. (Remark: We also denote A° as A.) In
fact we are thinking about a whole algebra of events constructed out of the
operations of set intersection and set union, respectively mirroring the logical
connectives AND and OR.

We state below, the elements of set theory relevant to probablity calcula-
tions: A set is a collection of objects.

The set of outcomes of rolling a die, 2 = {1,2,3,4,5,6}.
For each experiment £ we need to define €. () denotes the empty set.

1) AC B means A is a subset of B. Then, a € A=a € B
2)AUB=Cmeansc € C'=c € Aorc € B (or both).
JANB=Cmeansc € C =c € Aandc € B.
4)A=Cmeansc € C=c ¢ A.

5) A x B = C denotes the Cartesian product

The cartesian product of sets means ¢ € C < ¢ = (a,b) wherea € A

b € B. Note that c is an ordered pair.

Using these basic operations, one builds more “complicated” events from el-
ementary events. Given an experiment & with sample space (), any member
of 2 could be an event, in principle. In practice, one may limit oneself to a
subcollection A C 29,

How to choose A?



Basic ground rules for 4 (=Boolean algebra)
=AecA

,Be Athen AUB e A, ANnB e A
We think of A as a collection of interesting events.

Example:

Q=1{1,2,3,4,5,6}
A — {@, Q,Al,AQ}, where Al = {1, 3,5}, AQ = {2,4*6}

We define probability in a manner that agrees with experimental
observations — mimics frequencies, and consistently for all A € A.

Definition: Relative frequency of event A,

fa 2 %4 where n = # repetitions/trials of £ and ny = # occurrences of A
in n trials.
Check Properties

() 0< fa <1

(ii) fa = 1 iff A occurs every time in the n trials/repetitions. In particular
Ja=1

(iii) fa = 0 iff A never occurs in the n trials. In particular fj = 0.

(iv) If A and B are disjoint, i.e. ANB=0= faup=fa+ fp. In
particular f4 =1— f4.

(v) As n — oo, fa(n) — P(A) (77?)

For probability, turn these properties into axioms.

Given an experiment £, sample space €2, and collection of interesting events
A, a probability law or probability measure is a function, (Here the term
measure used in the same way as a measure of length, or area, or volume.)

P: A —|0,1], satisfying

(@) 0=P(A) =1

(b) P(Q2) =1

(¢ AnNB=0= P(AUB)= P(A)+ P(B) (addition rule).



Prove that

P(0)=0 B

P(A)=1-P(A)

Some basic properties of probabilities
(1) A C B=P(A) < P(B)

Proof:

Let C={ye B:y ¢ A}

Then B=C U A,andC N A=0

Thus: P(B)=P(C U A) = P(C)+ P(A)

Since P(C') > 0, the result follows. O

(2) P(AU B)=P(A)+ P(B)— P(A N B)

Proof:

AUB=(AnNB)U (AN B)U (AN B)is adecomposition into disjoint
sets. By the addition of axiom of probability,

P(AUB) = P(ANB) + P(AnN
N

+(P(An B)+P(AN B)) - P(AN B)
= P(ANB)U(AnB)
+P((AN B) U (AN B)) - P(An B)

(by the addition axiom)

P(AN (BUB))+P((AUA)nB)-PANB)
— PANQ+PQN B)—PAN B)
= P(A)+P(B)—P(AnN B) O

In the above, we have made use of the distributive law.

AN(BUC)=(ANB)U(ANC)
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One builds probability laws by recognizing what the equally likely events
are in a given experiment. The idea of equally likely outcomes draws on
symmetry. No special status is given to any particular outcome. One then
applies the axioms. Finite sample space problems are key to building
intuition.

What are the elementary events in experiment (iv) above? Assuming they
are equally likely, what is their common probability?



