ENEE 324 Engineering Probability Lecture 3

Conditioning

In a chance experiment £, occurrence of event A can be influenced by that
of event B. For instance, event A = flooding, always occurs following event
B = dam — burst; event A = flooding may have only a small likelihood of
occurrence following event C' = light shower .

Interdependence of events influences probabilities. Probabilities com-
puted after obtaining data on one event can be different (higher or lower
than) the probabilities computed before such data was available.

In weather forecasting, forecasts for a Wednesday made on Tuesday, 8:00
AM and Tuesday, 8:00 PM differ - additional observations are available dur-
ing the intervening 12 hour period.

In a medical setting, the presence of a disease in a patient would increase
the probability of certain symptoms in the patient. Some symptoms may be
present even in the absence of disease. For example, certain symptoms are
shared by allergies and by the common cold. In medical diagnosis, a doctor
seeks to determine the probability of a certain disease being present given
that certain symptoms are observed. This probability may be higher than
when the symptoms are not observed. Thus one could say that the observa-
tion of a symptom influences the likelihood of a diagnosis of a disease. But
this does not imply a causal relationship. Symptoms do not cause diseases!

Data conditions probabilities. In fact, practically all probabilities are
conditional probabilities. We now give a formal definition.

Definition: Let £ be a chance experiment with associated sample space
2 and Boolean algebra A of interesting events (i.e., subsets of ). Given
events A, B € A, the conditional probability of A given B denoted P(A| B)
is defined to be
P(A N B)
P(A|B) = ————
(A1B)=“5
provided P(B)#0 O
Note: If P(B) =0, then P(A| B) is undefined.
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What is the justification for making such a definition? A bit of counting helps.
Suppose experiment £ has n equally probable/likely elementary events. Sup-
pose n 4 is the number of such elementary events favorable to the occurrence
of event A. Suppose np is the number of elementary events favorable to the
occurrence of event B. Then P(B) = ng/n. If B actually occurs then the
outcomes have to be one of ng possibilities. Now, for A to occur, one looks
at a subset of these that favor A, and these are n4n ) of these. So it makes
sense to say,

P(A|B) = 2405

So our definition makes sense.

Example (optimal choice)

accept __ | 0® ® _ 1  show next

D | vending outlet

Consider a robot merchant that displays diamond rings one at a time to a
player. There is a total of m rings. The order of presentation is random.
The diamond rings are of differing quality. The player follows the rule: Never
accept a ring inferior to those previously rejected. The player can press the



show next button or the accept button, until there are no rings remaining
to be shown.

At the i*" stage

accept " ring reject it ring
[which by the rule has
to be better than previous

(1 —1) seen.] iti <m, i=m
STOP inspect next STOP
ring. (empty-handed)

Question: Suppose the player selects the i ring. What is the probability of
this being the best of all m rings? [This is a prototypical problem of deciding
when to commit to a particular course of action or choice.]

Solution:
B : = event that thelast of 7 inspected
rings is the best of those inspected
A : = eventthatthei” ring

isthe best of all m rings

We are interested in P(A| B).
Clearly A C B. Hence A N B = A.

Thus,
_ P(ANB)
_ P4
~ P(B)
But
P(B) = (Z;!I)! _%



Why? (i—1)!is the number of permutations of i distinct things, leaving one,
“the best ring,” fixed in the i*" place.
m—1)! 1
P(A) = (m-1D' 1
m! m
Why? (m — 1)! is the number of permutations of m distinct things, leave
one, “the best ring,” fixed in the i*" place. Thus,
I/m i

P(A]B) = /i m

Late commitment is more likely to give you the best deal. O

Example: Toss 2 fair dice, producing the outcome (X,Y). Here, X|Y €
{1,2,3,4,5,6}. Consider the events,

A = {(X,Y)|X+Y =10}
B = {(X,Y)|X>Y)}

What is the probability P(A|B)?

B = {(2,1), (3,1), (3,2

nB:15

Conditioning on B means one can reduce the sample space from the full set
Q2 of all 36 ordered pairs (X, Y') to the smaller subset B.

Within B, there is only one outcome (6,4) yielding 6 + 4 = 10, favorable to
A. So NAnB) = 1.

But A = {(6,4)7 (4a G)a (575)} = P(A) - % - 1_12



Also, P{an B) = nans/n _ /36 _ 1 as we expect.

P(B) ng/n  15/36 15
Thus, P(A) is different from P(A | B).

P(BNA) PANB) 1/36 1
PBIA =Py = p@y ~ iz 3

Properties of Conditional Probability
(1) 0< P(A|B) < 1.

Proof: () € AN B C B. Hence, P()) < P(A N B) < P(B).

P(AN B
It follows that 0 < %

(2) AN B={. Then P(A|B)=0.

<1 0

(3) B C A, then P(A|B) = 1.

Proof: B ¢ A= B N A= B. Thus,

PR — DD
_ PB)
- P(B)
— 1 0

k

(4) Given Ay, Ay, - - - Ay, disjoint, and A = Uf_; A;. Then, P(A| B) = > P(A;| B).
i=1

Proof: AN B = (UL 4;) n B=UL, (4 n B).

Since A; are disjoint, A; N B are also disjoint. Thus,

P(ANn B) = P((U_,A) N B)



Hence P(A|B) =

’“PAOB)
2P

k

ZA|B O

We have shown that conditional probability of a disjoint union is the sum of
the conditional probabilities. This demonstrates the parallel to the addition

axiom for probabilities.

Total probability formula: Suppose Ut B; =, B; U B; = 0. (We call

this a partition of (2.)
k
Then, P(A) =Y P(A|B;)P(B;)

=1

Proof:

A= ANQ
- U?:l (AN B)

It follows that,

P(A) = P (UL (AN B))

- iP(A N B;) (because (A N B;) N (AN By)
— ;P(A|B) P(B;) - O

0)



Now,
P(A N By
P(4)
P(A|Bi)P(B;)
P(A)
P(A| B)P(B;)
Y5 P(A| B;)P(B)

P(Bi|A> =

Bayes’ Formula (an inversion formula)

P(A|B;) P(B;)
i1 P(A| By) P(B))

P(B;| A) =

This formula has its origins in two very famous 18" century papers by Rev-
erend Thomas Bayes.

(1) “An essay toward solving a problem in the doctrine of chance,” Philo-
sophical Transactions of the Royal Society, 1763, pp 370-418 (reprinted in
Biometrika 45:293-315, 1958).

(17) “A letter on asymptotic series ...,” Philosophical Transactions of the
Royal Society, 1763, pp 269-271.

This is the most important formula in our subject. Various other versions
prove to be versatile in telling us how to update or evolve probabilities using
data. This is somewhat like Newton’s m# = f, telling us how to evolve
particle motions.

Example (Hiking): Hiker leaves O, choosing one of the roads OBy, OBs,
OBs;, OB, at random. At each subsequent fork, he again chooses a road at
random. What is the probability of the hiker arriving at point A?
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1
P(Bk?) = Z? k= 17273a4
1
P(AIB) =
1
P(AIB) = &
P(A|By) = 1
2
P(A|BY) =
1 1 1 1 1 2
P(A) — 15 Z + .14 =-=

1
2 4 4 5
= 67/120 (by total probability formula).

We can ask a related question. If the hiker arrives at A, what is the proba-
bility that he passed through B,? This is just P(By| A) and Bayes’ formula
gives us

P(A| By) P(By)
> 41 P(A| Bi) P(By)
1/2-1/4
67/120
120
8. 67
15
o

P(B2|A) -




