
ENEE 324 Engineering Probability Lecture 4

Applications of Bayes’ Theorem

Example: There are 10 urns, 9 of which are of type I and 1 of type II. Urn
of type I carries 2 white balls and 2 black balls. Urn of type II carries 5 white
balls and 1 black ball.

If a ball drawn randomly from a randomly chosen urn turns out to be white,
then what is the probability that the chosen urn is of type II? This is a model
of an inference problem.

Solution

A := ball drawn is white
B1 := urn is of type I
B2 := urn is of type II
B1 and B2 are disjoint events and define a partition Ω = B1 ∪ B2.

P (B2|A) = P (A|B2) P (B2)
P (A|B1) P (B1)+P (A|B2) P (B2)

P (B1) = 9/10 ; P (B2) = 1/10 Prior probabilities
P (A|B1) = 2/4 = 1/2
P (A|B2) = 5/6

P (B2|A) =
5/6 · 1/10

1/2 · 9/10 + 5/6 · 1/10

=
5

27 + 5
=

5

32
2
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Statistical Independence; The idea that two phenomena have nothing to
do with each other has a key role in probability theory.
Definition We say that in an experiment E , two events A and B are statis-
tically independent if,

P (A ∩ B) = P (A) · P (B)
Imagine a long series of trials, each of which involves carrying out two ex-
periments E1 and E2, where only E1 leads to A1 and only E2 leads to A2.

If n = total number of trials, n(A1 ∩ A2) = number of trials leading to
occurence of A1 and A2, then

P (A1 ∩ A2) ∼
n(A1 ∩ A2)

n

P (A2) ∼
n(A2)

n

P (A1) ∼
n(A1)

n
.

On the other hand

P (A1 ∩ A2) ∼
n(A1 ∩ A2)

n

=
n(A1 ∩ A2)

n(A2)
·
n(A2)

n

∼ P (A1) · P (A2)

The following example illustrates statistical independence and related sub-
tleties. Throw two dice resulting in the outcomes (X, Y ).
Let A1 : event that X is odd

A2 : event that Y is odd
A3 : event that X + Y is odd.

2



Clearly, A1 and A2 are independent.

P (A1) = 1
2

= P (A2)
P (A3) = Prob {X odd and Y even}

+Prob {X even and Y odd}
= 1

2
· 1

2
+ 1

2
· 1

2

= 1
2

P (A3|A1) = Prob {Y even}
= 1

2

P (A3|A2) = Prob {X even}
= 1

2

⇒ P (A3|A1) = P (A3) = P (A3|A2)

Thus A3 and A1 are independent and A3 and A2 are independent. 2

Definition: Given events A1, A2, . . . , An, we say these are mutually indepen-
dent if:

P (Ai ∩ Aj) = P (Ai) · P (Aj)

P (Ai ∩ Aj ∩ Ak) = P (Ai)P (Aj)P (Ak)

...

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · ·P (An).

In the previous example, the events A1, A2, A3 are not mutually independent,
even though they are pairwise independent, because

P (A1 ∩ A2 ∩ A3) = 0

but

P (A1)P (A2)P (A3) =
(

1
2

)3
.
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Probability Trees: When an experiment is of a sequential nature, it is often
convenient, especially for purposes of calculation, to represent the experiment
graphically by a probability tree. It is a rooted tree and the vertices represent
outcomes/events of the experiment. The edges are labelled by the conditional
probabilities required to descend from a given vertex to an adjacent one. The
probability associated with the event corresponding to a vertex is obtained
by taking under consideration the product of the probabilities labelling the
edges forming the unique path between the vertex, and the root of the tree.

Example: Flipping a coin three times:

∅

P(H  ) P(T  )

H T

P(H  |H  ) P(T  |H  ) P(H  |T  ) P(T  |T  )

H  H H  T T  H T  T

P(T  |H  H  ) P(T  |H  T  ) P(T  |T  H  ) P(T  |T  T  )

H  H  H H  H  T H  T  H H  T  T T  H  H T  H  T T  T  H T  T  T

1 1

1 1

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

3 21 3 21 3 21 3 21

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

fig. 1
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Corresponding Pascal’s Triangle

1 1

1 12

1 13 3 fig. 2

Probability trees may also be infinite. We give an example below.

Example: Player A flips a fair coin. If the outcome is a head, he wins; if the
outcome is a tail, player B flips. If B’s flip is a head, he wins; if not, player
A flips the coin again. This process is repeated (ad infinitum, if necessary)
until somebody wins. What is the probability that A wins?
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fig. 3

For the probability tree above, the darkened vertices correspond to the ele-
mentary events for which A wins. Since the probability represented by each
branch of the tree is 1/2, we have:

P{A wins} calculated via sampling with replacement
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= P{AH} + P{ATH} + P{ATTH} + · · ·

=
1

2
+
(

1

2

)3

+
(

1

2

)5

+ · · ·

=
1

2

[

1 +
(

1

2

)2

+
(

1

2

)4

+
(

1

2

)6

+ · · ·

]

=
1

2

1

1 −
(

1
2

)2

=
1

2

1

1 − 1/4

=
2

3

There is a big advantage for A to flip first.

Gambler’s Ruin – (Application of Total Probability Law)

Example: (1) Toss coin. Call correctly, win 1 dollar. Call wrongly, loose 1
dollar.

Payoff Matrix

@
@

@
@

@
@

Tail −1 1

Head 1 −1

TailHead
Call

Toss

Fig. 4
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Initial Capital = x dollars and x is a positive integer.

STRATEGY PLAY UNTIL EITHER :
ւց

Win m Dollars Lose Shirt
(i.e. has a total ( RUIN)
of m dollars)

Question: What is the probability p(x) of ruin?

A = RUIN
B1 = Win first call = p
B2 = Lose first call = (1 − p)

P (A) = P (A|B1) P (B1) + P (A|B2) · P (B2)
p(x) = p(x + 1) · 1

2
+ p(x − 1) 1

2
1 ≤ x ≤ m − 1

= p(x + 1) p + p(x − 1) · (1 − p)

B.C.

{

p(0)
p(m)

=
=

1
0
p(x) = C1 + C2x is the solution
C1 = 1 C1 + C2m = 0

Hence:

p(x) = 1 − x/m 0 ≤ x ≤ m

If p 6= 1/2 the solution is not linear

Example [Matching]:

n distinct items to be matched against n distinct cells. What is the proba-
bility of at least 1 match?

Solution:

Ak := event that kth item is matched (we don’t care about the rest)
P (n) = Probability of at least 1 match
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= P (∪n
k=1Ak)

=
n
∑

i=1

P (Ai) −
n
∑

i<j=2

P (Ai ∩ Aj)

+
n
∑

i<j<k=3

P (Ai ∩ Aj ∩ Ak · · ·)

+(−1)n+1P (A1 ∩ A2 ∩ · · ·An)

= P1 − P2 + P3 · · · ± Pn

P (Ai1 ∩ Ai2 · · · ∩ Aim) =
(n − m)!

n!

Pm =
∑

a≤i1<i2<···<im≤n

P (Ai1 ∩ Ai2 · · · ∩ Aim) =
(

n

m

)

(n−m)!
n!

= n!
(h−m)!m!

(n−m)!
n!

= 1
m!

P (n) = 1 − 1
2!

+ 1
3!
− 1

4!
· · ·+ (−1)n+1 1

n!

Special Cases: Number of permutations of n things in which there is at least

1 match = P (n) · n!.

n = 3 P (n)n! = 6 ×
(

1 − 1
2

+ 1
6

)

= 4

n = 4 P (n)n! = 24
(

1 − 1
2

+ 1
6
− 1

24

)

= 15

Problem: Given any n events, A1, A2, · · ·An prove that the probability of
exactly m ≤ n events occurring is

P = Pm −

(

m + 1

m

)

Pm+1 +

(

m + 2

m

)

Pm+2 · · · ±

(

n

m

)

Pn

where

Pk =
∑

1≤i1<i2

, · · · ik ≤ nP (Ai1 ∩ Ai2 ∩ · · · ∩ Aik)
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Good Example of Bayesian Inference

Sometimes the application of Bayes’ theorem may yield results that appear
counter-intuitive.

Example: A laboratory test is developed to detect mononucleosis (mono,
for short). The probability that a person selected at random has mono is
0.005. If a person has mono, 95% of the time he test will be positive. If a
person does not have mono, the test will be positive only 4% of the time.
These circumstances are described by the binary channel shown in Figure 5.
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@R
0.96

0.95

person w/o mono

person w/ mono positive mono test

negative mono test

0.05

0.04

Fig. 5

What is the probability that a person has mono conditioned on the fact that
his test came out positive?

M = person has mono
T = positive mono test

prior probabilities conditional probabilities
{

P (M)
P (M̄)

=
=

0.005
0.995

{

P (T |M) = 0.95
P (T |M̄) = 0.04
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Then, by Bayes’ theorems,

a posteriori probability

{P (M |T ) =
P (T |M)P (M)

P (T |M)P (M) + P (T |M̄)P (M̄)

=
0.95 × 0.005

0.95 × 0.005 + 0.04 × 0.995

=
0.00475

0.00475 + 0.0398

=
0.00475

0.04455

= 0.107 !

Thus the test might give rise to too many false alarms. How to improve?
Bring down the probability P (T |M̄) from 0.04. Improve the test.

A useful form of Bayes’ theorem is obtained by conditioning in more than
one event.

Let H := hypothesis (e.g. a disease event),
Let E := evidence of data (e.g. image data event), and
Let C := context (e.g. age group). Then,

P (H|E ∩ C) =
P (E|H ∩ C) · P (H|C)

P (E|C)

To see this, observe that the r.h.s. above

=
P (E ∩ H ∩ C)

P (H ∩ C)
·
P (H ∩ C)

P (C)
·

P (C)

P (E ∩ C)

=
P (E ∩ H ∩ C)

P (E ∩ C)

=
P (H ∩ (E ∩ C))

P (E ∩ C)
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= P (H|E ∩ C)

= l.h.s
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