

ENEE 324 Engineering Probability Lecture 4

Applications of Bayes' Theorem

Example: There are 10 urns, 9 of which are of type I and 1 of type II. Urn of type I carries 2 white balls and 2 black balls. Urn of type II carries 5 white balls and 1 black ball.

If a ball drawn randomly from a randomly chosen urn turns out to be *white*, then what is the probability that the chosen urn is of type II? This is a model of an inference problem.

Solution

A := ball drawn is white

B_1 := urn is of type I

B_2 := urn is of type II

B_1 and B_2 are disjoint events and define a partition $\Omega = B_1 \cup B_2$.

$$\begin{aligned} P(B_2|A) &= \frac{P(A|B_2) P(B_2)}{P(A|B_1) P(B_1) + P(A|B_2) P(B_2)} \\ P(B_1) &= 9/10 ; P(B_2) &= 1/10 & \text{Prior probabilities} \\ P(A|B_1) &= 2/4 &= 1/2 \\ P(A|B_2) &= 5/6 \end{aligned}$$

$$\begin{aligned} P(B_2|A) &= \frac{5/6 \cdot 1/10}{1/2 \cdot 9/10 + 5/6 \cdot 1/10} \\ &= \frac{5}{27 + 5} = \frac{5}{32} & \square \end{aligned}$$

Statistical Independence; The idea that two phenomena have nothing to do with each other has a key role in probability theory.

Definition We say that in an experiment \mathcal{E} , two events A and B are *statistically independent* if,

$$P(A \cap B) = P(A) \cdot P(B)$$

Imagine a long series of trials, each of which involves carrying out two experiments \mathcal{E}_1 and \mathcal{E}_2 , where only \mathcal{E}_1 leads to A_1 and only \mathcal{E}_2 leads to A_2 .

If n = total number of trials, $n(A_1 \cap A_2)$ = number of trials leading to occurrence of A_1 and A_2 , then

$$\begin{aligned} P(A_1 \cap A_2) &\sim \frac{n(A_1 \cap A_2)}{n} \\ P(A_2) &\sim \frac{n(A_2)}{n} \\ P(A_1) &\sim \frac{n(A_1)}{n}. \end{aligned}$$

On the other hand

$$\begin{aligned} P(A_1 \cap A_2) &\sim \frac{n(A_1 \cap A_2)}{n} \\ &= \frac{n(A_1 \cap A_2)}{n(A_2)} \cdot \frac{n(A_2)}{n} \\ &\sim P(A_1) \cdot P(A_2) \end{aligned}$$

The following example illustrates statistical independence and related subtleties. Throw two dice resulting in the outcomes (X, Y) .

Let A_1 : event that X is odd

A_2 : event that Y is odd

A_3 : event that $X + Y$ is odd.

Clearly, A_1 and A_2 are independent.

$$\begin{aligned}
 P(A_1) &= \frac{1}{2} & = P(A_2) \\
 P(A_3) &= \text{Prob } \{X \text{ odd and } Y \text{ even}\} \\
 &\quad + \text{Prob } \{X \text{ even and } Y \text{ odd}\} \\
 &= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \\
 &= \frac{1}{2}
 \end{aligned}$$

$$\begin{aligned}
 P(A_3|A_1) &= \text{Prob } \{Y \text{ even}\} \\
 &= \frac{1}{2} \\
 P(A_3|A_2) &= \text{Prob } \{X \text{ even}\} \\
 &= \frac{1}{2} \\
 \Rightarrow P(A_3|A_1) &= P(A_3) & = P(A_3|A_2)
 \end{aligned}$$

Thus A_3 and A_1 are independent and A_3 and A_2 are independent. \square

Definition: Given events A_1, A_2, \dots, A_n , we say these are *mutually independent* if:

$$\begin{aligned}
 P(A_i \cap A_j) &= P(A_i) \cdot P(A_j) \\
 P(A_i \cap A_j \cap A_k) &= P(A_i)P(A_j)P(A_k) \\
 &\vdots \\
 P(A_1 \cap A_2 \cap \dots \cap A_n) &= P(A_1)P(A_2) \cdots P(A_n).
 \end{aligned}$$

In the previous example, the events A_1, A_2, A_3 are *not* mutually independent, even though they are pairwise independent, because

$$P(A_1 \cap A_2 \cap A_3) = 0$$

but

$$P(A_1)P(A_2)P(A_3) = \left(\frac{1}{2}\right)^3.$$

Probability Trees: When an experiment is of a *sequential nature*, it is often convenient, especially for purposes of calculation, to represent the experiment graphically by a *probability tree*. It is a *rooted tree* and the vertices represent *outcomes/events* of the experiment. The edges are labelled by the *conditional probabilities* required to *descend* from a given vertex to an adjacent one. The probability associated with the event corresponding to a vertex is obtained by taking under consideration the product of the probabilities labelling the edges forming the unique path between the vertex, and the root of the tree.

Example: Flipping a coin three times:

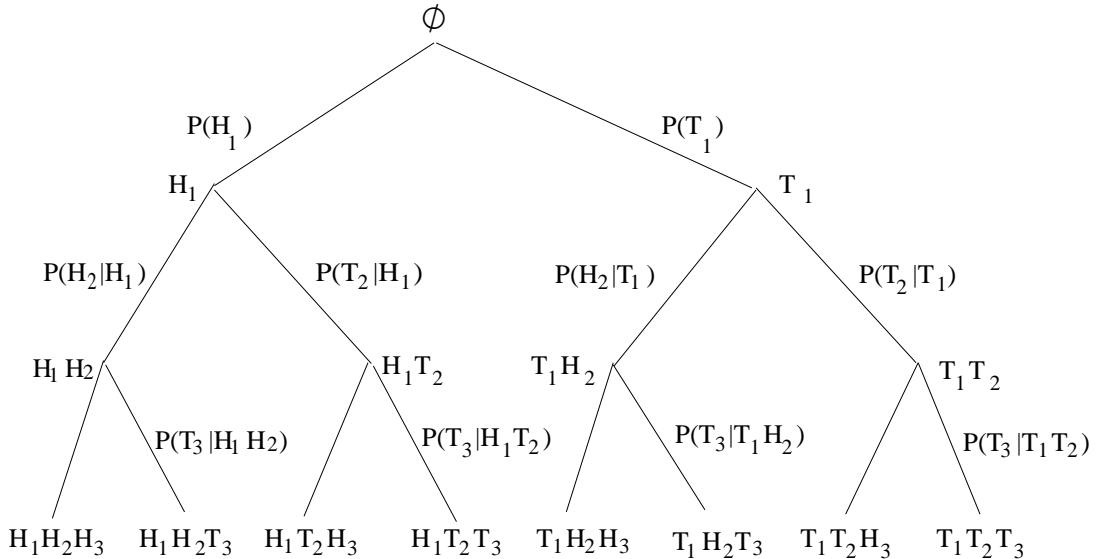
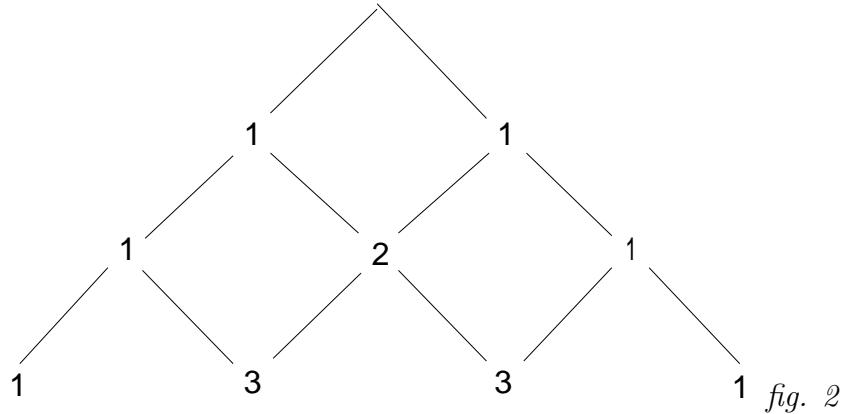


fig. 1

Corresponding Pascal's Triangle



Probability trees may also be infinite. We give an example below.

Example: Player A flips a fair coin. If the outcome is a head, he wins; if the outcome is a tail, player B flips. If B 's flip is a head, he wins; if not, player A flips the coin again. This process is repeated (*ad infinitum*, if necessary) until somebody wins. What is the probability that A wins?

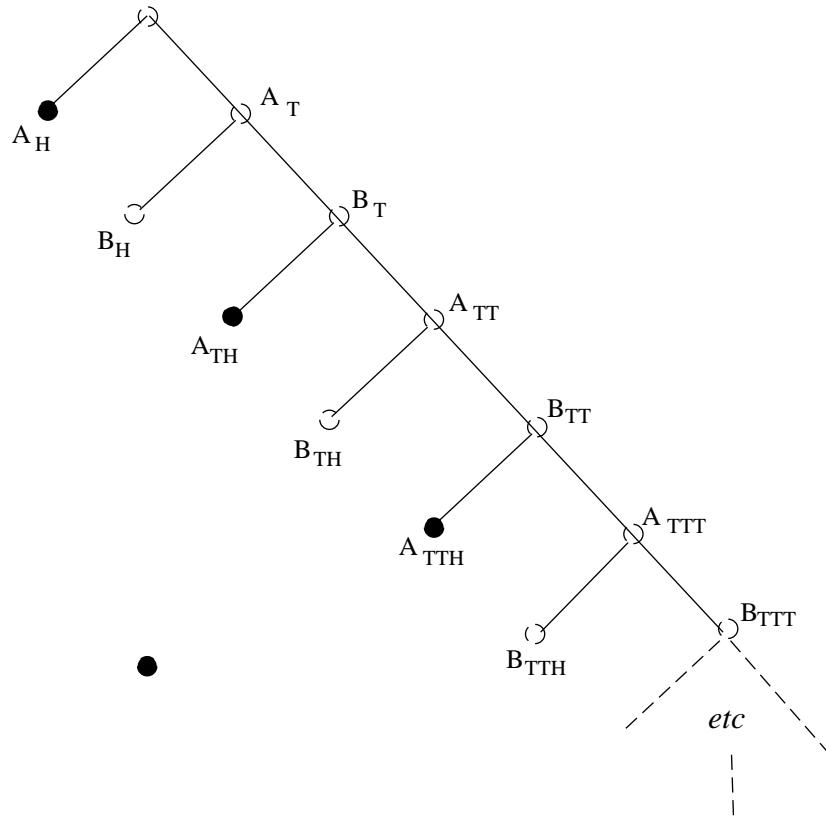


fig. 3

For the probability tree above, the darkened vertices correspond to the *elementary events* for which A wins. Since the probability represented by each branch of the tree is $1/2$, we have:

$$P\{A \text{ wins}\} \quad \text{calculated via sampling with replacement}$$

$$\begin{aligned}
&= P\{A_H\} + P\{A_{TH}\} + P\{A_{TTH}\} + \dots \\
&= \frac{1}{2} + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5 + \dots \\
&= \frac{1}{2} \left[1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^6 + \dots \right] \\
&= \frac{1}{2} \frac{1}{1 - \left(\frac{1}{2}\right)^2} \\
&= \frac{1}{2} \frac{1}{1 - 1/4} \\
&= \frac{2}{3}
\end{aligned}$$

There is a *big advantage* for A to flip first.

Gambler's Ruin – (Application of Total Probability Law)

Example: (1) Toss coin. Call correctly, win 1 dollar. Call wrongly, loose 1 dollar.

Payoff Matrix

		Head	Tail
		Head	Tail
Toss Call	Head	1	-1
	Tail	-1	1

Fig. 4

Initial Capital = x dollars and x is a positive integer.

STRATEGY PLAY UNTIL EITHER :

 Win m Dollars Lose Shirt
 (i.e. has a total (**RUIN**)
 of m dollars)

Question: What is the probability $p(x)$ of ruin?

$$\begin{aligned} A &= \text{RUIN} \\ B_1 &= \text{Win first call} = p \\ B_2 &= \text{Lose first call} = (1-p) \end{aligned}$$

$$\begin{aligned} P(A) &= P(A|B_1)P(B_1) + P(A|B_2) \cdot P(B_2) \\ p(x) &= p(x+1) \cdot \frac{1}{2} + p(x-1) \cdot \frac{1}{2} \quad 1 \leq x \leq m-1 \\ &= p(x+1)p + p(x-1) \cdot (1-p) \\ \text{B.C.} \begin{cases} p(0) &= 1 \\ p(m) &= 0 \end{cases} & \begin{aligned} p(x) &= C_1 + C_2x && \text{is the solution} \\ C_1 &= 1 && C_1 + C_2m = 0 \end{aligned} \end{aligned}$$

Hence:

$$p(x) = 1 - x/m \quad 0 \leq x \leq m$$

If $p \neq 1/2$ the solution is *not* linear

Example [Matching]:

n distinct items to be matched against n distinct cells. What is the probability of at least 1 match?

Solution:

A_k := event that k^{th} item is matched (we don't care about the rest)
 $P^{(n)}$ = Probability of at least 1 match

$$\begin{aligned}
&= P(\bigcup_{k=1}^n A_k) \\
&= \sum_{i=1}^n P(A_i) - \sum_{i < j = 2}^n P(A_i \cap A_j) \\
&\quad + \sum_{i < j < k = 3}^n P(A_i \cap A_j \cap A_k \dots) \\
&\quad + (-1)^{n+1} P(A_1 \cap A_2 \cap \dots \cap A_n) \\
&= P_1 - P_2 + P_3 \dots \pm P_n \\
P(A_{i_1} \cap A_{i_2} \dots \cap A_{i_m}) &= \frac{(n-m)!}{n!} \\
\\
P_m &= \sum_{a \leq i_1 < i_2 < \dots < i_m \leq n} P(A_{i_1} \cap A_{i_2} \dots \cap A_{i_m}) = \binom{n}{m} \frac{(n-m)!}{n!} \\
&= \frac{n!}{(n-m)!m!} \frac{(n-m)!}{n!} = \frac{1}{m!} \\
P^{(n)} &= 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} \dots + (-1)^{n+1} \frac{1}{n!}
\end{aligned}$$

Special Cases: Number of permutations of n things in which there is at least 1 match = $P^{(n)} \cdot n!$.

$$\begin{aligned}
n = 3 \quad P^{(n)} n! &= 6 \times \left(1 - \frac{1}{2} + \frac{1}{6}\right) \\
&= \underline{\underline{4}} \\
n = 4 \quad P^{(n)} n! &= 24 \left(1 - \frac{1}{2} + \frac{1}{6} - \frac{1}{24}\right) \\
&= \underline{\underline{15}}
\end{aligned}$$

Problem: Given any n events, A_1, A_2, \dots, A_n prove that the probability of exactly $m \leq n$ events occurring is

$$P = P_m - \binom{m+1}{m} P_{m+1} + \binom{m+2}{m} P_{m+2} \dots \pm \binom{n}{m} P_n$$

where

$$P_k = \sum_{1 \leq i_1 < i_2} \dots i_k \leq n P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k})$$

Good Example of Bayesian Inference

Sometimes the application of Bayes' theorem may yield results that appear counter-intuitive.

Example: A laboratory test is developed to detect *mononucleosis* (mono, for short). The probability that a person selected at random has mono is 0.005. If a person has mono, 95% of the time the test will be positive. If a person does not have mono, the test will be positive only 4% of the time. These circumstances are described by the *binary channel* shown in *Figure 5*.

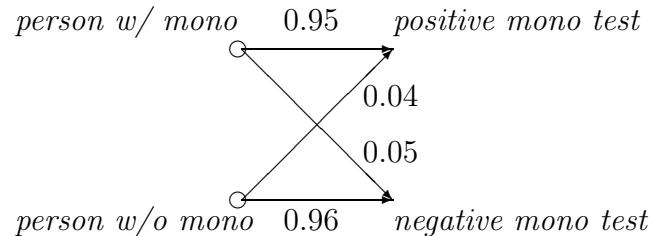


Fig. 5

What is the probability that a person has mono conditioned on the fact that his test came out positive?

$$\begin{array}{ll}
 M & = \text{person has mono} \\
 T & = \text{positive mono test} \\
 \text{prior probabilities} & \text{conditional probabilities} \\
 \begin{cases} P(M) & = 0.005 \\ P(\bar{M}) & = 0.995 \end{cases} & \begin{cases} P(T|M) & = 0.95 \\ P(T|\bar{M}) & = 0.04 \end{cases}
 \end{array}$$

Then, by Bayes' theorems,

a posteriori probability

$$\begin{aligned}
 P(M|T) &= \frac{P(T|M)P(M)}{P(T|M)P(M) + P(T|\bar{M})P(\bar{M})} \\
 &= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.04 \times 0.995} \\
 &= \frac{0.00475}{0.00475 + 0.0398} \\
 &= \frac{0.00475}{0.04455} \\
 &= \underline{\underline{0.107}} \quad !
 \end{aligned}$$

Thus the test might give rise to too many false alarms. How to improve?
Bring *down* the probability $P(T|\bar{M})$ from 0.04. Improve the test.

A useful form of Bayes' theorem is obtained by conditioning in more than one event.

Let H := hypothesis (e.g. *a disease* event),

Let E := evidence of data (e.g. *image data* event), and

Let C := context (e.g. *age group*). Then,

$$P(H|E \cap C) = \frac{P(E|H \cap C) \cdot P(H|C)}{P(E|C)}$$

To see this, observe that the r.h.s. above

$$\begin{aligned}
 &= \frac{P(E \cap H \cap C)}{P(H \cap C)} \cdot \frac{P(H \cap C)}{P(C)} \cdot \frac{P(C)}{P(E \cap C)} \\
 &= \frac{P(E \cap H \cap C)}{P(E \cap C)} \\
 &= \frac{P(H \cap (E \cap C))}{P(E \cap C)}
 \end{aligned}$$

$$= P(H|E \cap C)$$

$$= l.h.s$$