Engineering Probability Lecture 5

Random Variables

In many chance experiments the outcomes are only indirectly known through
some measurement or observable. It is a bit like getting a read-out from an
instrument. The read-out function does not produce the same value every
time you do the experiment. This is the essence of the random or chance na-
ture of the experiment. We call such observable functions random variables.

Definition: Given an experiment £ with sample space {2, a random variable

associated to the experiment is a function X : 2 — R. [Initially, we confine
attention to real-valued observables.]

The following picture captures the main idea.
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If the experimenter can access only the value of X, it is as if there is a (dot-
ted) box as in figure 1 and nothing inside the box is directly accessible.



Example 1:
& = insert a light bulb in a socket, switch on the light, wait till it burns out.
Record when this happens

() .= possible dates and times of burn out.

X : Q) — R, = non-negative real numbers

w — X (w) = lifetime of bulb

= w— (time when the bulb was switched on) O

Example 2:
€ = Pair of coin tosses

Q= {HH HT,TH,TT}

Suppose we make up X and Y as follows

I if we{lHH, TT}
_ 7 1 ;
Xw) = {—% if we{TH,HT}
1 if we{HH}
Y(w) = 0 if we{HH,HT}

> if we{TH,TT}

Only X is a random variable, and Y is not. Why? Y is not a function. So
it cannot be a random variable. O

To avoid mixing up a function and its value, we reserve uppercase letters for
functions that are random variables. A value X (w) is denoted as z.

Example 3: Suppose we have a sequence of n tosses of a given coin. For

each toss we have Q = {H,T}. For the i toss, let X; : 2 — R be defined
by

H
T

W2, ..., M.

s =

1

2



Thus we have n random variables associated to the entire sequence of coin
tosses.

We can take the entire sequence of experiments as one giant experiment &
with sample space

O = {HH---H, HTH---H,--}
= set of sequences in H and T, of length n.
Then X :0— R may be defined as,

X(w) = total number of times H came up
— Yx)
i=1

where w; = outcome of just the i?" coin toss and X, as before. Since X ag-
gregates the X, it is “less informative” than the collection of X;. O

Returning to fig. 1, one can stay entirely on the outside of the dotted line
by defining the events in the range of X.

Definition: Let £ be an experiment, () the sample space and X : 2 — R a
random variable. Let Rx = range of X = set of values taken by X (w) as w
varies in 2. One can work with an algebra of events, denoted as Ry, anal-
ogous to the Boolean algebra of interesting events (subsets of ) introduced
before. Whenever BeR x, i.e. B C Rx is such that,

A={weQ | X(w)eB} 2 X (B)eA,

one can define the probability of occurrence of B to be simply

See fig. 2



To keep track of how A is related to B, we write:

Definition: A random variable X is said to be discrete if Ry is a finite or
countable set.

Example 4: Let V; = number of a particles emitted by a gram of Radium
in a time interval [0, ¢]. Then N is a discrete random variable.

For a discrete random variable X with Rx = {x1, 22, 23 - -}, one associates
a probability mass function given by,

p(z;) = Prob {X = z;}.
It is standard to use the short-hand p; for p(x;). The probability mass func-
tion is simply the sequence {p1, p2, p3,- - -}

Note that p; > 0 and Zpi =1

=1

Example 5: (Geometric Distribution) Consider an experiment £ in which
one tosses a coin repeatedly until it turns up ‘Head.” Assume that the suc-
cessive tosses are independent and the probability of a ‘Head’ in a single toss
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= p (coin may be biased, so p need not be = 1/2). Then

Q= {H, TH TTH, TTTH, -}

is a space of sequences. Consider the random variable,

X: 2 — R
w +— length of (w)

Then Ry = {1,2,3,...}

The probability mass function in this case is given by,

pr = Prob{X =k}
= Prob{first(k — 1)tosses come up TAIL and k"comes up HEAD}

= (1_p)k71p k:172737"'
The probability mass function {py, ps, ...} is a geometric sequence and hence
X is called a geometric random variable. O
: 2 N-1 1—rv
NOTE: Since (1 +r+ri4o+r ) = , it follows that,
—r

o0 N
k=1 k=1

N
= liMmn—oo Z(l —p)"p
k=1

(1-@1-p")
(1-(1-p)

1

1—1+p
= 1 as 1t should be.

= p (since(l —p) < 1)



Example 6: (Binomial Random Variable) Consider an experiment involv-
ing n successive, independent coin tosses, with a coin as in Example 5. The
sample space Q = {HH...H, HTHT ... H,...} is a space of 2" sequences.
The random variable X is defined by X (w) = number of head in w. Clearly,

Rx = {0,1,2,...,n},and
pr = Prob{X =k}

- (Z)pk(l—p)n_k k=0,1,2,...,n. O

What happens when n — oo, p — 0, but np — a in Example 67

Dk n! (k=D n—k+1)! pF1—pnk
Pr—1 B kl(n — k)! n! pF1(1 — p)n—ktt
_ on—k+1 p
B k 1—p
wp—(k=1p a
k(1 —p) k

as n — 00, p— 00, NP — a

Thus
a a a a*
— — . — — —_
Pk P 1 Do k,po
a\m N
Po = (1—p)"~(1——> — e "as n — 0.
n
ok
Thus the sequence p, — e‘“ﬁ 0.

Definition: The random variable X with Rx = {0, 1,2, -- -} and probability
mass function given by,

pr = Prob (z =k)

= e k=0,1,2,--



is called a Poisson random variable. We have shown that the binomial —
Poisson.

Example 7: (Lottery) How many lottery tickets should I buy to make the
probability of winning at least €7

Solution: In a lottery, out of a total of N tickets, there are M winning

M
tickets. A purchase is a Bernoulli trial with probability p = N A set of n

purchases is a sequence of n Bernoulli trials, with Prob (holding k& winning

M
tickets) = %e‘“ (approximately) where a = np = nT We are asking to
choose n
so that, e < 1—=P0)=1-—¢e",
equivalently, e < 1—¢o0r e N <1—ck¢,
. nM
equivalently, N < In(l—e),
) nM
equivalently, N > —In(1—c¢),
N
equivalently, n > —Mln(l —€) a

Cumulative Distribution Function

As already discussed, it is possible to work with Ry instead of €2. Similarly,
instead of probabilitites defined on an algebra A of interesting events, one
can work with an equivalent concept of the cumulative distribution function.

Definition: Let X be a random variable. The cumulative distribution func-
tion associated to X denoted as the ¢-d - f- Fx(-) is defined by
Fx(z) = Prob{we : X(w) <z} O

Knowing the ¢ - d - f- we can determine interesting probabilities.

Suppose 1 < T
Prob {weQ : 21 < X (w) < 29} = Prob {weQ : X(w) < z9}—Prob {weQ) : X (w) < z1}

This follows from the disjoint union,

{w: X(w) <z} ={w: X(w) <z} U{w:a; < X(w) <z}
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For a discrete random variable X with sample space {2 and range

Rx = {$1,$2,x3; e }

where the x;’s are ordered xj < xpyq k=1,2,...,
and probability mass function given by,

pr = P(X = x3) = Prob{w : X(w) = x4},

the cumulative distribution function is given by,
Fx(z) = ZpkU(fE — Ty)
k=1

Here U(z — x4,) is the unit step function

{0 T < Ty

1 T = T

Uz — )

This follows directly from the definition. The resulting picture of the ¢ - d - f-
is that of a staircase function.

!
-
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fig. 3 T
The jump at x = xj is py.

Irrespective of whether a random variable is of the discrete variety or some-
thing else, the very definition of the ¢ - d - f- leads to some basic properties.



(1) Fx(x) > 0 VreR
lim
(i) x— —o0 Fx(z) = 0
lim
r— 400 Fx(z) = 1
(141) x,y such that z < y = Fx(z) < Fx(y)
(monotone increasing property)
(1v) Fx is right continuous, i.e.

lim

Fx(z) = h10, Fx(z+h)

Only the last in the list above requires some extra concepts which we con-
sider beyond our scope.

The random variable in Example 1, the lifetime 7" of a bulb, it not a discrete
random variable. So, we do not speak of a probability mass function in this
case. Instead, one can start directly from a cumulative distribution function
as a given (from physics or from experimental data). The following ¢ - d - f-
seems natural,

l—e™, t>0
Fr(t) = {0 <0
Thus P(T>t) = 1—P(T<t) t>0
1—(1—e™)
—At

(&

Here A > 0 is a parameter. The formula above implies that long lifetimes
are highly unlikely. It implies more. What is the probability that the bulb
will last an extra time 0, given that it has lasted until time a ? This is,



P{T > a+0|T > a}
PHT >a+ 6} N{T > a})

P{T > a}
P{T > a+ 6}
~  P{T>a}
o= Ma+d)
e—\a
= W O

The above formula suggests that your (or bulb’s) present age is immaterial
to how much longer you (or the bulb) will live. This memory-less property
may be unrealistic and one may want a different one. Notice that in the
present instance, one can differentiate Fr to obtain (fixing-up things at 0),
the density

pr(t) =

The graph of py is as in figure 4.a. We call T" an exponential randon
vaiable.

pr pbr

fig. 4
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A better choice of density might be as in fig. 4(b). We now are led to the
following;:

Definition: A random variable X is said to be continuous if the associated
cumulative distribution can be expressed as

fx<x>— /“ px(y)dy

—0o0

for a suitable piecewise continuous function px which we will call the proba-
bility density function (p -d-f-) of X. It follows that

dFx
pxle) =

and by the properties of the ¢ - d - f-, we conclude

px(z) = 0 zeR

/_OO px(y)dy = 1

o

b
Prob{a < X <b} = / px(y)dy

NOTE: Even for discrete random variables, if one is willing to work with

d
Dirac delta functions, we can use 6(x — ) = d—U(w — x3,) to write
x

o0
px() = S pd(z — )
k=1
This is a convenient mnemonic but not essential.
Example 8: (Uniform Distribution) Suppose a point £ is “marked at ran-
dom” in an interval [a, b]. This means that the probability of the mark falling
in the sub-interval [/, "] C [a,b] does not depend on the location of [¢', £"],

just the length of the subinterval = £” — ¢’.

Let P(s) denote the probability of falling into a subinterval of length z. Then,
P(zx+1t) = P(s)+ P(t)
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by hypothesis (and axion of addition). This is true for all s, ¢ such that the
subintervals are in [a, b].

Essentially, one function satifies the above functional equation: P(s) =k - s

and k = ;= because P(b—a) = 1. Thus

P <¢<)
f” . 5/
b—rc

E// 1
= / dx
¢ b —a

Thus the random variable £ is continuous with density

1 a<x<b

pe(w) = {8__(1 x ¢ |a,b] H

Example 9: (Service System) Suppose customers arrive into a service system
according to the law:

N, = number of arrivals in the time
interval [0, ¢] (counter)
At)"
Prob{N;, =n} = e‘Atg n=20,1,1,...
n!
The parameter A is called the rate of the arrival process. Let t, = time

instant of n'* arrival. Let T = time to the next arrival.
Prob{T < ¢} =1— P{T > ¢}

Proceeding on the assumption that the time t, is as good an origin of time
as 0 for the Poisson counter,

P{T > 6§} = P{N;=0}
— oM

So P{T <6} = 1—e
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The interarrival time random variable 7" is what we call an exponential

random variable, short for exponentially distributed. One can prove (later)
that the assumption above is correct.

Example 1 0: (Gaussian random variable) X is a Gaussian random vari-

able if it has a density

px(z) = %exp(ﬂ) — 00 < x <00

where peR and 6 > 0 are parameters.

px(x)

fig- 5

What do these parameters signify? p is the point about which px is sym-
metric. ¢ measures the spread of the density function. Greater o is greater
is the spread. What is ¢? ¢ has to ensure that

/ pxdr = 1.

00 _ 2
Thus c = / exp —u dx
oo 202

00 a2
= / exp <%) dy  (change variable y=x —o0)

oo

= \/50/ exp(—2z%)dz (change z = —%-)

\/ﬁcr
[e%e)
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What is / e~*dz ? First denote it as I. Then

I’ = / e_z2dz/ e~ dw
= / / o~ ) o dw,

a double integral on the (z,w) plane.

Do a change of variable, (z,w) — (r,0) where z = rcos(d), w = rsin(0).
Then 22 +w? = r?,  dzdw = rdrdf and,

[e’e] 2T
I’ = / / e " rdrdd
o Jo
= 27 / e "rdr
0

2 o
= 5[ ey (y=r?)
0

= 7
Hence I = /7
Thus, ¢ = V2 0 \/T = V270, so the Gaussian density is

px(z) = - {—M} :

om0 202

We also refer to X as a normal random variable denoted as,
X ~ N(p,0?) 0

Example 11: (Cauchy random variable, also sometimes referred to as
Lorentzian) A random variable X is said to be a Cauchy random variable
if

1
1+ (2 — x0)?

N | =

pX(Jf) = —o0o<r <o

with graph symmetrical about zy (see figure 0).
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To

Jig. 6

The graph decays slower than that of the Gaussian as z — oo. O

We now introduce a new concept of quantifying an uncertain or random func-
tion. This involves the process of averaging.

Suppose a chance experiment, repeated n times, produces the observations

X1, T, X3, -, x,, of arandom variable X. Consider the average
AUQ(X) _ $1+£E2++$n
n

It has the properties:

(i)  Suppose X > 0,i.e. Rx C [0,00),then
Avg(X) > 0.

(ii) Avg(cX) = cAvg(X)

(iii) Avg(X +Y) = Avg(X) + Avg(Y)

(iv) Avg(1) 1

the left hand side, 1 denotes the “random variable” which always takes the
value 1.

If X is a discrete random variable with Rx = {a1, ag, as, - -}, then
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o0
= E Qi T
i=1
where r; = (number of times «a; occurs)/n

= relative frequency of q;

Recall that for large number of trials r; — p; by the frequentist intepretation
of p;. We are led to substituting p; for r; in the above expression for average,
and hence,

Definition: For a discrete random variable X with Ry = {ay, as, az, -}
and probability mass function given by,

p; = Prob {X = a;} 1=1,2,3,---

the expectation of X is

BX) - Y am =
=1

All of the properties of the average Avg are satisfied by the expectation. For
a continuous random variable X with density px,

E(X) = L/W)xpxﬁwdm

o0

Example 11 (Some expectations)

(a)
X ~ Binomial (n,p)
Rx = {0,1,2,...,n}

n

pr = Prob (X =k)= (k

)ﬁﬂ—ka k=0,1,2,....n

s = S ok( )
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Thus p

(n—1)!

S

Poisson(a)
{0,1,2,...}
Prob (X = k)

L

17
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(c)

For a Poisson arrival process with N, = # arrivals in [0, t] satisfying

)™
Prob(N, =n) = e_)‘t% n=0,1,2,3,...

E(N,) = M
E(N)
t

()

Thus we see a justification for calling A the arrival rate.

(d)

Hence N =

X ~ Uniform ([a,b])

RX = [a,b]
L a<z<bh
_ b—a — —
px(z) = {0 x & la,b]
b
Then, FE(X) = /ab—adm
L a7y,
- b—q?2 @
B b —a? _a+b
- 2(b—a) 2

X ~ N(p,o?

B(X) = /_(:x\/;_ﬂaexp <_(x2%‘2“)2) dz

= /_Z(I—M+M)\/21—7TUGXP (—%) dz
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- e (S

+u
= 0+ p because the integrand in the first integral is odd
E(X) = p

X ~ Cauchy/Lorentzian

Then E(X) does not exist! Why?
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