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PROBABILITY: a bit of etymology

Wahr -true, genuine
Wahrhaft - truthful, true

Wahrhaftigkeit - truthfulness

Wahrheit - truth, fact

Wahrnehmen - to perceive, observe, notice
Wahrnehmung - perception

Wahrsagen - to prophesy, tell fortunes
Wahrsager -

Wahrsagerin - soothsayer, fortune-teller
Wahrsagung - prophecy

Wahrscheinlich - probable, probably
Wahrscheinlichkeit - probability
Wahrscheinspruch - verdict

Wahrscheinlichkeitstheorie - probability theory

— Collins Gem German-FEnglish Dictionary
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Basic Concepts

This is a course on modeling uncertainty. Uncertainty is all about us —
the outcome of a coin toss, the life-time of an electric light bulb, Nyquist-
Johnson fluctuations in the measured value of current through a resistor
connected to a heat bath, the chance of rain at noon on a weekday, are all
valid examples of uncertain/chance/random phenomena. Yet, through study
of specific contexts, and by carrying out carefully repeated experiments, it
is possible to get a handle on uncertainty, sufficiently to be able to make
useful predictions. A great deal of science and engineering is concerned with
making predictions in the face of uncertainty. Probability theory provides
the language, the techniques, and as a consequence the mathematical models
that enable us to do this.

There are other ways to approach uncertainty, but probability theory is
quite possibly the most wide-ranging and successful means to do this. Prob-
ability theory offers a coherent conceptual system to understand and cope
with uncertainty.

Modern technology makes extensive use of probability theory. Some ex-
amples include: (a) algorithms used to route messages/data in a communica-
tion/computing network; (b) techniques used to project the yield in accept-
able quality silicon wafers in a semiconductor manufacturing plant; (¢) the
error-correcting codes used in compact disc players; (d) performance analysis
and design of a service system using the theory of queues (waiting lines).

Everyday use of the language of probability is based on built-up intu-
ition that people have. Sometimes such intuition can prove unreliable or ill-
defined. One can build correct intuition by solving certain “toy problems”,
such as card-shuffling. It is useful and advisable to develop a systematic
approach to probability. In particular, the models of probability have to be
tested for “consistency” against data (observed in experiments).



Often, costly and sensitive decision-making processes depend on proba-
bility models. Some examples: (a) the decision by a “wild-catter” to drill or
not to drill for oil in a particular parcel of optioned land; (b) the decision to
launch a space-shuttle based on forecasts of weather patterns; (c¢) the deci-
sion to attempt circum-navigation of the globe in a hot-air balloon; (d) the
decision to attempt maiden voyage of a grand ocean liner in sea-lanes known
to be populated by ice-bergs. The risks involved in such decision processes
must be quantified so that an experienced and competent human can make
rational choices. Lloyd’s of London quantifies such risks all the time. How?
The answer lies in probabilistic concepts.

Probability can also be used to answer (approximately) questions in fields
where one normally does not expect to have to deal with uncertainty. An
example of this is the Buffon’s needle problem: suppose a needle is “tossed at
random” onto a plane ruled with parallel lines a distance L apart, where by
a “needle” we mean a line segment of length [ < L. What is the probability
of the needle intersecting one of the parallel lines?

We present a systematic approach to this important subject by beginning
with fundamental concepts.

Very often, one thinks of a problem involving uncertainty as being asso-
ciated to an ezperiment £. 1If £ is repeatable, so much the better. There is
a whole school of thought, that insists on attaching probabilities only to re-
peatable experiments, known as the frequentists. Yet, there are problems in-
volving uncertainty where no natural experiments can be suggested to model
or deduce the uncertainty. For instance, despite having a large body of solid
geophysical knowledge and experience, a geophysicist, when called upon to
offer what he/she thinks of as the “likelihood” of a cataclysmic earthquake
on the eastern sea-board by the year 2000, may appear to “pick a percentage
out of the hat”. What is going on here is that the number offered is a measure
of the scientist’s conviction — an example of subjective probability. (There is
a history of raging arguments between subjectivists and frequentists. After
all, is it not the goal of science to be objective and stamp out all that carries
the taint of prejudice/subjectivity? We will meet on our journey, represen-
tatives of both camps,—Richard von Mises, Bruno de Finetti, John Maynard
Keynes, Leonard Savage, Ronald A. Fisher,...). Whether the probabilities
that we discuss below are based on (repeatable) experiments or based on an
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expert’s conviction, the rules for working with probabilities are the same.
These rules serve as a foundation for mathematical modeling of uncertainty.
At a fundamental level, these are based on the language of set theory and
Boolean algebra.

First, we need a set (2, called the sample space. The elements of this
set are the (exhaustive list of) possible outcomes of an experiment £. With
reference to £, we will have the notion that ) is a universal set, i.e., all
possible outcomes of £ are accounted for in €.

Examples

(i) £ = single coin toss, Q= {H,T}

(ii) £ = roll of a single die, 2 =1{1,2,3,4,5,6}

(ili) £ = coin toss until a first head, Q@ = {H,TH,TTH, ...}

(iv) &€ = mark a random dot on a ruler of length L. Here we take

Q =10, L]

(Note, this is an easy experiment to repeat and there are different ways to
repeat it, either via independent trials or dependent trials.)

(v) €& = survey of all computers that are up or down at 11:00 a.m. Here (2
can be taken as simply a list of all IP addresses with a tag UP or DOWN
In example (i) and (ii) the sample space €2 is a finite set. In (v) it is finite
but large (in Maryland campus)! In (iii) it is countably infinite. In (iv) it
is uncountably infinite. In the beginning we will concentrate on situations
wherein € is finite or countably infinite (a discrete sample space).

An event A (associated to an experiment) is simply a set of possible outcomes,
i.e. a subset of €. The collection of all possible events is denoted as 2 and
is called the power set of 2.

Examples (associated to above experiments)

(i) head occurs: A= {H}

(i) even number occurs: A = {2,4,6}

(iii) first head occurs in at most 3 tosses: A ={H,TH,TTH}
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(iv) mark within halfway point: A = [0,0.5L]

(v) only one computer is down: A = {uy ds ug, dy us ug, ...}

Events cannot be discussed in isolation. Thus if the event A occured, then
event A°, the complement of A, did not occur. Thus we are also thinking
about A° even as we speak of A. (Remark: We also denote A° as A.) In
fact we are thinking about a whole algebra of events constructed out of the
operations of set intersection and set union, respectively mirroring the logical
connectives AND and OR.

We state below, the elements of set theory relevant to probablity calcula-
tions: A set is a collection of objects.

The set of outcomes of rolling a die, 2 = {1,2,3,4,5,6}.
For each experiment £ we need to define €. () denotes the empty set.

1) AC B means A is a subset of B. Then, a € A=a € B
2)AUB=Cmeansc € C'=c € Aorc € B (or both).
JANB=Cmeansc € C =c € Aandc € B.
4)A=Cmeansc € C=c ¢ A.

5) A x B = C denotes the Cartesian product

The cartesian product of sets means ¢ € C < ¢ = (a,b) wherea € A

b € B. Note that c is an ordered pair.

Using these basic operations, one builds more “complicated” events from el-
ementary events. Given an experiment & with sample space (), any member
of 2 could be an event, in principle. In practice, one may limit oneself to a
subcollection A C 29,

How to choose A?



Basic ground rules for 4 (=Boolean algebra)
=AecA

,Be Athen AUB e A, ANnB e A
We think of A as a collection of interesting events.

Example:

Q=1{1,2,3,4,5,6}
A — {@, Q,Al,AQ}, where Al = {1, 3,5}, AQ = {2,4*6}

We define probability in a manner that agrees with experimental
observations — mimics frequencies, and consistently for all A € A.

Definition: Relative frequency of event A,

fa 2 %4 where n = # repetitions/trials of £ and ny = # occurrences of A
in n trials.
Check Properties

() 0< fa <1

(ii) fa = 1 iff A occurs every time in the n trials/repetitions. In particular
Ja=1

(iii) fa = 0 iff A never occurs in the n trials. In particular fj = 0.

(iv) If A and B are disjoint, i.e. ANB=0= faup=fa+ fp. In
particular f4 =1— f4.

(v) As n — oo, fa(n) — P(A) (77?)

For probability, turn these properties into axioms.

Given an experiment £, sample space €2, and collection of interesting events
A, a probability law or probability measure is a function, (Here the term
measure used in the same way as a measure of length, or area, or volume.)

P: A —|0,1], satisfying

(@) 0=P(A) =1

(b) P(Q2) =1

(¢ AnNB=0= P(AUB)= P(A)+ P(B) (addition rule).



Prove that

P(0)=0 B

P(A)=1-P(A)

Some basic properties of probabilities
(1) A C B=P(A) < P(B)

Proof:

Let C={ye B:y ¢ A}

Then B=C U A,andC N A=0

Thus: P(B)=P(C U A) = P(C)+ P(A)

Since P(C') > 0, the result follows. O

(2) P(AU B)=P(A)+ P(B)— P(A N B)

Proof:

AUB=(AnNB)U (AN B)U (AN B)is adecomposition into disjoint
sets. By the addition of axiom of probability,

P(AUB) = P(ANB) + P(AnN
N

+(P(An B)+P(AN B)) - P(AN B)
= P(ANB)U(AnB)
+P((AN B) U (AN B)) - P(An B)

(by the addition axiom)

P(AN (BUB))+P((AUA)nB)-PANB)
— PANQ+PQN B)—PAN B)
= P(A)+P(B)—P(AnN B) O

In the above, we have made use of the distributive law.

AN(BUC)=(ANB)U(ANC)
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One builds probability laws by recognizing what the equally likely events
are in a given experiment. The idea of equally likely outcomes draws on
symmetry. No special status is given to any particular outcome. One then
applies the axioms. Finite sample space problems are key to building
intuition.

What are the elementary events in experiment (iv) above? Assuming they
are equally likely, what is their common probability?
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Counting

For the case of rolling a single fair die, let Q = {1,2,3,4,5,6} and let

A=2"={0,0 {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {2,3}..}
There are 2° = 64 members in A, and only 6 of these are elementary events.
Declare that all singletons (elementary events) are equally likely. [recall fair-

ness assumption]

Since P(Q2) = 1 and 2 is the union of 6 singletons, all equally likely, it follows
from the addition axiom that,

Probability of a singleton = %.

The probabilities of all the other events in A can be determined from this
one fact | We simply apply the addition axiom.

In a deck of well-shuffled cards, the probability of drawing the heart = 5%

Example 1: Toss a coin repeatedly until the first head. In each toss,

P{H}=p: P{T}=1-p=q.
Q2 =1{1,2,3,...} = sample space of # tosses needed until first head.
Assume p # 0.

p; = p{Jj tosses until first head}

j—1

= q - p j=12,...

Where did this come from?



@7y = p-(l+qg+d+..)

= p-lim(1+q¢+¢+..+¢")
lim 1-—¢"

n— o0 1—g¢q

(because ¢ < 1)

RS

Example 2: Lifetime of computer memory chip satisfies: “proportion of
chips whose lifetime exceeds t decreases exponentially at the rate a.”
Here a@ > 0.

Q = (0,00)
P[(t,00)] = e t>0
P[(0,00)] = e = 1 as it should be.
Pl(r;s)] = Pl(r,00)] = P[(s,00)] = e —e™™, 1 <s

Some combinatorics

(a) Given n distinct things, how many ways can we permute them?
Think of this as filling n marked cells

Fill cell 1 in any of n ways.
Fill cell 2 in any of (n — 1) ways (with the remaining (n — 1) things).
Fill cell 3 with any of (n — 2) ways.



Fill cell n in (1) way.

Total number of ways of filling cells is nPn=n(n—1)(n —2)---3-2-1
We call this n!.

(b) Given n distinct things, how many different permutations of r things
can we make from these n things?

Treat the problem as one of filling r out of n cells.

Proceeding as before we get

nPr = nn—1)(n-2).(n—r+1)

SAMPLING

(c) Given n distinct things, how many combinations of r things out of these
n things can we make?

Denote this yet to be determined quantity as nC'r.

Combinations ignore order. Thus,

nCr - rl = nPr

Hence nC’T = m

The sampling is said to be random if all of these combinations are equally



likely. So the probability of a particular combination being picked up in a
random sample is "=

It is common to use the notation (ﬁ) instead of nCr. These integers have a
long history. Newton’s binomial expansion says

(a+b)" = kz:) <Z> a" o F

Proof: (a+b)" is an expression, homogeneous of degree n. Hence each term

in (a + b)" will be of the form a*6"~*. How many are of this form? (Z) O

Identitites

Single out an object — ay, say.
Numbers of choices of r objects out of n objects = (number of choices that
exclude a;) 4+ (number of choices that include a) = (";1) + (:‘:11)

Example 3: (sample without replacement)
Total of N items.
Choose n at random without replacement.

This will yield (]X ) possible samples.

If the N items are made up of r; blues and 7, reds, ry +ry = N, then the
probability of choosing ezactly s; blues and (n — s1) reds, (here s; < n and



s1 <1y, (n—s1) <ry), is given by

()62
()
We call this the hypergeometric law
Where did this come from?

Answer: Think of each sample as equally likely and count how many there
are favorable to the event of interest.

Example 4: (inspection for quality control) A batch of 100 manufactured
items is checked by an inspector, who examines 10 items selected at random.
If none of the 10 items is defective, the batch of 100 is accepted. Otherwise,
the batch is subject to further inspection. What is the probability that a
batch containing 10 defectives is accepted?
Solution: Number of ways of selecting 10 items of a batch of 100 is

1

N = 00 .

10

All such samples are equally likely.

A = event that the batch is accepted by the inspector. Then A occurs if all
10 items of the selected sample belong to the set of 90 non-defectives.

Number of combinations (samples) favorable to A is:

o - ()

N(4)
P4) = —~
(%) 900 10190!
(100) ~10!80! 100!
10
1 1
~ (1—E)10 ~ O



Example 5: What is the probability that two cards picked randomly from
a full deck are aces?

Solution

N = 52 cards
n=4 aces.

There are (522) equally likely picks.

N(A) = (g) ways are favorable to getting 2 aces.

N _G) _e2 6 1
N _(522)_52~51_26~51_ﬁ

Theorem: Given a population of n elements, let ny, ns,...n; be positive in-
tegers such that n; + ny + ...nxy = n. Then there are precisely

|
n!
N=—"—
nylna!l.. .ny!

ways of partitioning the population into k£ sub-populations of the prescribed
sizes and order.

Proof: Order of sub-populations matters.

(n1 = 4, No = 2,71,3, ,nk) % (n1 = 2,712 = 4,713, ,nk)

Order within sub-populations does not matter.



N o <n><n—n1><n—n1—n2>_'_<n—zf12nz>
N No ns Ng—1

n! (n—mnq)! (n —ng — ny)!

nil(n —ny)! nal(n —ny — no)! ngl(n —ny — ny — n3)!

(n — Z =1 nZ)
' nk_ll k'
B n! .
ni'ng!...ny!

Example 6: What is the probability that each of 4 bridge players holds an
ace?

n = 52
ny = n2:n3:n4:13

From the theorem, there are i equally likely deals.

|n2|n3|n

There are 4! = 24 ways of giving an ace to each player.

|
18 ways.

Remaining 48 cards can be dealt in 55

Thus these are 24 - distinct deals favorable to the desired event.

(12'

P(event) = 24-

%

e
—_
(e
ot

Use Stirling’s formula to get this approrimation.



Stirling’s Formula (following Feller)

Let a, = #nzlﬂ,...

Ani1 o (n + 1)' n!
an (n + 1)"+1/(n)"
(n+1Dn!  (n)"
(n+1)"(n+1) n!

1
D
Let by =n! (£)" = ane”
log, b’;“ — 1+ 1log, 22

e ( 1> ( 1>
1 = 1—- — )1 1 _
09, 3, n -+ 5 09, + "

= L + ! <0
o 12n2 0 12n3 '

Hence (3,11 < (,. We have shown that 3, is a montone decreasing se-
quence which is bounded below by 0. Thus 3 = "™ exists.

n—oo



In other words,

(€ n+y
B, = n! - — f a constant

So we can take n! ~ 3 (n)"t2e=(+1/2) Verify that § = v/27e.

Thus

n! ~\2x(n)"tzem (I)

There is a slightly better one.

nl ~ 27 (n) e "t 2w (II)

Formulas (I) and (II) are respectively the first and second approximations of
Stirling.
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Conditioning

In a chance experiment £, occurrence of event A can be influenced by that
of event B. For instance, event A = flooding, always occurs following event
B = dam — burst; event A = flooding may have only a small likelihood of
occurrence following event C' = light shower .

Interdependence of events influences probabilities. Probabilities com-
puted after obtaining data on one event can be different (higher or lower
than) the probabilities computed before such data was available.

In weather forecasting, forecasts for a Wednesday made on Tuesday, 8:00
AM and Tuesday, 8:00 PM differ - additional observations are available dur-
ing the intervening 12 hour period.

In a medical setting, the presence of a disease in a patient would increase
the probability of certain symptoms in the patient. Some symptoms may be
present even in the absence of disease. For example, certain symptoms are
shared by allergies and by the common cold. In medical diagnosis, a doctor
seeks to determine the probability of a certain disease being present given
that certain symptoms are observed. This probability may be higher than
when the symptoms are not observed. Thus one could say that the observa-
tion of a symptom influences the likelihood of a diagnosis of a disease. But
this does not imply a causal relationship. Symptoms do not cause diseases!

Data conditions probabilities. In fact, practically all probabilities are
conditional probabilities. We now give a formal definition.

Definition: Let £ be a chance experiment with associated sample space
2 and Boolean algebra A of interesting events (i.e., subsets of ). Given
events A, B € A, the conditional probability of A given B denoted P(A| B)
is defined to be
P(A N B)
P(A|B) = ————
(A1B)=“5
provided P(B)#0 O
Note: If P(B) =0, then P(A| B) is undefined.
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What is the justification for making such a definition? A bit of counting helps.
Suppose experiment £ has n equally probable/likely elementary events. Sup-
pose n 4 is the number of such elementary events favorable to the occurrence
of event A. Suppose np is the number of elementary events favorable to the
occurrence of event B. Then P(B) = ng/n. If B actually occurs then the
outcomes have to be one of ng possibilities. Now, for A to occur, one looks
at a subset of these that favor A, and these are n4n ) of these. So it makes
sense to say,

P(A|B) = 2405

So our definition makes sense.

Example (optimal choice)

accept __ | 0® ® _ 1  show next

D | vending outlet

Consider a robot merchant that displays diamond rings one at a time to a
player. There is a total of m rings. The order of presentation is random.
The diamond rings are of differing quality. The player follows the rule: Never
accept a ring inferior to those previously rejected. The player can press the



show next button or the accept button, until there are no rings remaining
to be shown.

At the i*" stage

accept " ring reject it ring
[which by the rule has
to be better than previous

(1 —1) seen.] iti <m, i=m
STOP inspect next STOP
ring. (empty-handed)

Question: Suppose the player selects the i ring. What is the probability of
this being the best of all m rings? [This is a prototypical problem of deciding
when to commit to a particular course of action or choice.]

Solution:
B : = event that thelast of 7 inspected
rings is the best of those inspected
A : = eventthatthei” ring

isthe best of all m rings

We are interested in P(A| B).
Clearly A C B. Hence A N B = A.

Thus,
_ P(ANB)
_ P4
~ P(B)
But
P(B) = (Z;!I)! _%



Why? (i—1)!is the number of permutations of i distinct things, leaving one,
“the best ring,” fixed in the i*" place.
m—1)! 1
P(A) = (m-1D' 1
m! m
Why? (m — 1)! is the number of permutations of m distinct things, leave
one, “the best ring,” fixed in the i*" place. Thus,
I/m i

P(A]B) = /i m

Late commitment is more likely to give you the best deal. O

Example: Toss 2 fair dice, producing the outcome (X,Y). Here, X|Y €
{1,2,3,4,5,6}. Consider the events,

A = {(X,Y)|X+Y =10}
B = {(X,Y)|X>Y)}

What is the probability P(A|B)?

B = {(2,1), (3,1), (3,2

nB:15

Conditioning on B means one can reduce the sample space from the full set
Q2 of all 36 ordered pairs (X, Y') to the smaller subset B.

Within B, there is only one outcome (6,4) yielding 6 + 4 = 10, favorable to
A. So NAnB) = 1.

But A = {(6,4)7 (4a G)a (575)} = P(A) - % - 1_12



Also, P{an B) = nans/n _ /36 _ 1 as we expect.

P(B) ng/n  15/36 15
Thus, P(A) is different from P(A | B).

P(BNA) PANB) 1/36 1
PBIA =Py = p@y ~ iz 3

Properties of Conditional Probability
(1) 0< P(A|B) < 1.

Proof: () € AN B C B. Hence, P()) < P(A N B) < P(B).

P(AN B
It follows that 0 < %

(2) AN B={. Then P(A|B)=0.

<1 0

(3) B C A, then P(A|B) = 1.

Proof: B ¢ A= B N A= B. Thus,

PR — DD
_ PB)
- P(B)
— 1 0

k

(4) Given Ay, Ay, - - - Ay, disjoint, and A = Uf_; A;. Then, P(A| B) = > P(A;| B).
i=1

Proof: AN B = (UL 4;) n B=UL, (4 n B).

Since A; are disjoint, A; N B are also disjoint. Thus,

P(ANn B) = P((U_,A) N B)



Hence P(A|B) =

’“PAOB)
2P

k

ZA|B O

We have shown that conditional probability of a disjoint union is the sum of
the conditional probabilities. This demonstrates the parallel to the addition

axiom for probabilities.

Total probability formula: Suppose Ut B; =, B; U B; = 0. (We call

this a partition of (2.)
k
Then, P(A) =Y P(A|B;)P(B;)

=1

Proof:

A= ANQ
- U?:l (AN B)

It follows that,

P(A) = P (UL (AN B))

- iP(A N B;) (because (A N B;) N (AN By)
— ;P(A|B) P(B;) - O

0)



Now,
P(A N By
P(4)
P(A|Bi)P(B;)
P(A)
P(A| B)P(B;)
Y5 P(A| B;)P(B)

P(Bi|A> =

Bayes’ Formula (an inversion formula)

P(A|B;) P(B;)
i1 P(A| By) P(B))

P(B;| A) =

This formula has its origins in two very famous 18" century papers by Rev-
erend Thomas Bayes.

(1) “An essay toward solving a problem in the doctrine of chance,” Philo-
sophical Transactions of the Royal Society, 1763, pp 370-418 (reprinted in
Biometrika 45:293-315, 1958).

(17) “A letter on asymptotic series ...,” Philosophical Transactions of the
Royal Society, 1763, pp 269-271.

This is the most important formula in our subject. Various other versions
prove to be versatile in telling us how to update or evolve probabilities using
data. This is somewhat like Newton’s m# = f, telling us how to evolve
particle motions.

Example (Hiking): Hiker leaves O, choosing one of the roads OBy, OBs,
OBs;, OB, at random. At each subsequent fork, he again chooses a road at
random. What is the probability of the hiker arriving at point A?
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1
P(Bk?) = Z? k= 17273a4
1
P(AIB) =
1
P(AIB) = &
P(A|By) = 1
2
P(A|BY) =
1 1 1 1 1 2
P(A) — 15 Z + .14 =-=

1
2 4 4 5
= 67/120 (by total probability formula).

We can ask a related question. If the hiker arrives at A, what is the proba-
bility that he passed through B,? This is just P(By| A) and Bayes’ formula
gives us

P(A| By) P(By)
> 41 P(A| Bi) P(By)
1/2-1/4
67/120
120
8. 67
15
o

P(B2|A) -
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Applications of Bayes’ Theorem

Example: There are 10 urns, 9 of which are of type I and 1 of type II. Urn
of type I carries 2 white balls and 2 black balls. Urn of type II carries 5 white
balls and 1 black ball.

If a ball drawn randomly from a randomly chosen urn turns out to be white,
then what is the probability that the chosen urn is of type II? This is a model
of an inference problem.

Solution
A := ball drawn is white
By := urn is of type [
By := urn is of type II
B; and B, are disjoint events and define a partition 2 = B; U Bs.

P(A|Bs) P(B
P(Ba|A) P(A|B1) P((B‘l)z-i)-P(iﬂfB)z) P(B2)
P(By) = 9/10; P(B,) = 1/10 Prior probabilities
P(A|B)) = 2/4 = 1/2
P(A|By) = 5/6
P(B,JA) = 5/6-1/10
? 1/2-9/10+5/6-1/10
5 5
— —_— = — O
27+5 32



Statistical Independence; The idea that two phenomena have nothing to
do with each other has a key role in probability theory.

Definition We say that in an experiment £, two events A and B are statis-
tically independent if,

P(ANnB)=P(A)- P(B)
Imagine a long series of trials, each of which involves carrying out two ex-
periments & and &, where only & leads to A; and only & leads to A,.

If n = total number of trials, n(A; N A2) = number of trials leading to
occurence of A; and A,, then

n(A;NA
P(A;NAy) ~ %
A
P(Ag) ~ n(nQ)
n(A
P(A;) ~ (nl).
On the other hand
n(A;NA
P(A;NAy) ~ %
. n(A1 N A2> ) n(A2)
B n(As) n

~ P(Al) ) P(A2)

The following example illustrates statistical independence and related sub-
tleties. Throw two dice resulting in the outcomes (X,Y).
Let A, : event that X is odd

Ay : event that Y is odd

Az : event that X 4+ Y is odd.



Clearly, A, and A, are independent.

P(A) = 3 = P(A)
P(A3) =  Prob {X odd and Y even}
+Prob {X even and Y odd}
—= l . l + l . l
2727273
)

P(A3|A;) = Prob {Y even}
1

2
P(A3|As) = Prob {X even}
1

2
Thus As and A; are independent and Az and A, are independent. a
Definition: Given events Ay, As, ..., A,, we say these are mutually indepen-

dent if:

P(A;NA;) = P(A) - P(4;)
P(A;NA;NA) = P(A)P(A;)P(Ag)

In the previous example, the events A, Ay, A3 are not mutually independent,
even though they are pairwise independent, because

P(AlmAgmAg) :0
but

P(A)P(As)P(45) = (3)



Probability Trees: When an experiment is of a sequential nature, it is often
convenient, especially for purposes of calculation, to represent the experiment
graphically by a probability tree. 1t is a rooted tree and the vertices represent
outcomes/events of the experiment. The edges are labelled by the conditional
probabilities required to descend from a given vertex to an adjacent one. The
probability associated with the event corresponding to a vertex is obtained
by taking under consideration the product of the probabilities labelling the
edges forming the unique path between the vertex, and the root of the tree.

Example: Flipping a coin three times:

)
P(H,)
Hy
P(H,[H;) P(T,H1) P(T, [T )
H H2 HiTo TiH, T,
P(T3 |Hy H2) P(T5H,T>) P(T3[T1T2)

fig. 1



Corresponding Pascal’s Triangle

S
AN

Ve
/\/\/\

1 lﬁgg

Probability trees may also be infinite. We give an example below.

Example: Player A flips a fair coin. If the outcome is a head, he wins; if the
outcome is a tail, player B flips. If B’s flip is a head, he wins; if not, player
A flips the coin again. This process is repeated (ad infinitum, if necessary)
until somebody wins. What is the probability that A wins?



fig. 3

For the probability tree above, the darkened vertices correspond to the ele-
mentary events for which A wins. Since the probability represented by each
branch of the tree is 1/2, we have:

P{A wins} calculated via sampling with replacement



= P{Ay}+ P{Arg}+ P{Arru}+---
ENORORT
)@ ]
1
2

WIN N =

There is a big advantage for A to flip first.

Gambler’s Ruin - (Application of Total Probability Law)

Example: (1) Toss coin. Call correctly, win 1 dollar. Call wrongly, loose 1
dollar.

Payoftf Matrix

Toss Head Tail
Call
Head 1 -1
Tail —1 1
Fig. 4



Initial Capital = x dollars and x is a positive integer.

STRATEGY PLAY UNTIL EITHER :
N\
Win m Dollars Lose Shirt
(i.e. has a total ( RUIN)
of m dollars)

Question: What is the probability p(x) of ruin?

A = RUIN
By = Win first call = »p
B; = Lose first call = (1—p)

P(A) =  P(A|B)) P(By) + P(A|By) - P(By)
pa) = pla+l)-i+pe-1L 1<z<m—1
= pl+l)p+plz—-1)-(1-p)
0) = 1
p.cl M
{ p(m) = 0
p(z) = Cy+Chx is the solution
Cl =1 C1 + Cgm =0
Hence:
plr) =1—xz/m 0<zx<m

If p # 1/2 the solution is not linear

Example [Matching]:

n distinct items to be matched against n distinct cells. What is the proba-
bility of at least 1 match?

Solution:

Ay, := event that k' item is matched (we don’t care about the rest)
P™ = Probability of at least 1 match



P(A,NA;,---NA;)

P( Z:lAk)

— zn:P(A,-) = 2": P(A:N 4;)

+ Y PANANA--)

i<j<k=3
+(=1)"TP(A N Ay - Ay)
P—-—P+P---+£P,
(n —m)!
n!

n n—m)!
Pm = Z P(AilﬁAi2-~-ﬂAim) = (m) (n')
a<i]<ia<-<tm<n
o n! (n—m)! _ 1
— (h—m)!m! n! T om!
PM = 1—2 4o —1 4 ()"

Special Cases: Number of permutations of n things in which there is at least

1 match = P™ . nl.

6x(1—%+%)

4
24(1-4+1-4)
15

Problem: Given any n events, Ay, As,---A, prove that the probability of

exactly m < n events occurring is

1 2
Psz—<m+ )Pm+1+<m+ )Pm+2-~- i(”)Pn
m m m

where

Pk: Z ,sznP(A“ﬂAszmAzk)

1<iy <io



Good Example of Bayesian Inference

Sometimes the application of Bayes’ theorem may yield results that appear
counter-intuitive.

Example: A laboratory test is developed to detect mononucleosis (mono,
for short). The probability that a person selected at random has mono is
0.005. If a person has mono, 95% of the time he test will be positive. If a
person does not have mono, the test will be positive only 4% of the time.
These circumstances are described by the binary channel shown in Figure 5.

person w/ mono  0.95 positive mono test

0.04
0.05

person w/o mono 0.96  negative mono test
Fig. 5

What is the probability that a person has mono conditioned on the fact that
his test came out positive?

M = person has mono
T = positive mono test
prior probabilities conditional probabilities
P(M) = 0.005 P(T|M)=0.95
P(M) = 0.995 P(T|M) = 0.04

10



Then, by Bayes’ theorems,

a posteriori probability
P(T|M)P(M)
P(T|M)P(M) + P(T|M)P(M)
0.95 x 0.005
0.95 x 0.005 4 0.04 x 0.995
0.00475
0.00475 4 0.0398
0.00475
0.04455
= 0107 |

{(P(M|T) =

Thus the test might give rise to too many false alarms. How to improve?
Bring down the probability P(T|M) from 0.04. Improve the test.

A useful form of Bayes’ theorem is obtained by conditioning in more than
one event.

Let H := hypothesis (e.g. a disease event),
Let E := evidence of data (e.g. image data event), and
Let C := context (e.g. age group). Then,

P(E|HNC) - P(H|C)

P(HIENC) = PUEC)

To see this, observe that the r.h.s. above

P(ENHNC) P(HNC)  P((C)
P(HNC)  P(C) P(ENC)
P(ENHNC)

P(ENC)
PHN(ENCQC))

P(ENC)

11



P(H|ENC)
l.h.s

12



Engineering Probability Lecture 5

Random Variables

In many chance experiments the outcomes are only indirectly known through
some measurement or observable. It is a bit like getting a read-out from an
instrument. The read-out function does not produce the same value every
time you do the experiment. This is the essence of the random or chance na-
ture of the experiment. We call such observable functions random variables.

Definition: Given an experiment £ with sample space {2, a random variable

associated to the experiment is a function X : 2 — R. [Initially, we confine
attention to real-valued observables.]

The following picture captures the main idea.

1 N
\ \
\\\ \\‘
nature | ‘
picksw - = XW)
\\ //
\\\ //
E fig. 1

If the experimenter can access only the value of X, it is as if there is a (dot-
ted) box as in figure 1 and nothing inside the box is directly accessible.



Example 1:
& = insert a light bulb in a socket, switch on the light, wait till it burns out.
Record when this happens

() .= possible dates and times of burn out.

X : Q) — R, = non-negative real numbers

w — X (w) = lifetime of bulb

= w— (time when the bulb was switched on) O

Example 2:
€ = Pair of coin tosses

Q= {HH HT,TH,TT}

Suppose we make up X and Y as follows

I if we{lHH, TT}
_ 7 1 ;
Xw) = {—% if we{TH,HT}
1 if we{HH}
Y(w) = 0 if we{HH,HT}

> if we{TH,TT}

Only X is a random variable, and Y is not. Why? Y is not a function. So
it cannot be a random variable. O

To avoid mixing up a function and its value, we reserve uppercase letters for
functions that are random variables. A value X (w) is denoted as z.

Example 3: Suppose we have a sequence of n tosses of a given coin. For

each toss we have Q = {H,T}. For the i toss, let X; : 2 — R be defined
by

H
T

W2, ..., M.

s =

1

2



Thus we have n random variables associated to the entire sequence of coin
tosses.

We can take the entire sequence of experiments as one giant experiment &
with sample space

O = {HH---H, HTH---H,--}
= set of sequences in H and T, of length n.
Then X :0— R may be defined as,

X(w) = total number of times H came up
— Yx)
i=1

where w; = outcome of just the i?" coin toss and X, as before. Since X ag-
gregates the X, it is “less informative” than the collection of X;. O

Returning to fig. 1, one can stay entirely on the outside of the dotted line
by defining the events in the range of X.

Definition: Let £ be an experiment, () the sample space and X : 2 — R a
random variable. Let Rx = range of X = set of values taken by X (w) as w
varies in 2. One can work with an algebra of events, denoted as Ry, anal-
ogous to the Boolean algebra of interesting events (subsets of ) introduced
before. Whenever BeR x, i.e. B C Rx is such that,

A={weQ | X(w)eB} 2 X (B)eA,

one can define the probability of occurrence of B to be simply

See fig. 2



To keep track of how A is related to B, we write:

Definition: A random variable X is said to be discrete if Ry is a finite or
countable set.

Example 4: Let V; = number of a particles emitted by a gram of Radium
in a time interval [0, ¢]. Then N is a discrete random variable.

For a discrete random variable X with Rx = {x1, 22, 23 - -}, one associates
a probability mass function given by,

p(z;) = Prob {X = z;}.
It is standard to use the short-hand p; for p(x;). The probability mass func-
tion is simply the sequence {p1, p2, p3,- - -}

Note that p; > 0 and Zpi =1

=1

Example 5: (Geometric Distribution) Consider an experiment £ in which
one tosses a coin repeatedly until it turns up ‘Head.” Assume that the suc-
cessive tosses are independent and the probability of a ‘Head’ in a single toss

4



= p (coin may be biased, so p need not be = 1/2). Then

Q= {H, TH TTH, TTTH, -}

is a space of sequences. Consider the random variable,

X: 2 — R
w +— length of (w)

Then Ry = {1,2,3,...}

The probability mass function in this case is given by,

pr = Prob{X =k}
= Prob{first(k — 1)tosses come up TAIL and k"comes up HEAD}

= (1_p)k71p k:172737"'
The probability mass function {py, ps, ...} is a geometric sequence and hence
X is called a geometric random variable. O
: 2 N-1 1—rv
NOTE: Since (1 +r+ri4o+r ) = , it follows that,
—r

o0 N
k=1 k=1

N
= liMmn—oo Z(l —p)"p
k=1

(1-@1-p")
(1-(1-p)

1

1—1+p
= 1 as 1t should be.

= p (since(l —p) < 1)



Example 6: (Binomial Random Variable) Consider an experiment involv-
ing n successive, independent coin tosses, with a coin as in Example 5. The
sample space Q = {HH...H, HTHT ... H,...} is a space of 2" sequences.
The random variable X is defined by X (w) = number of head in w. Clearly,

Rx = {0,1,2,...,n},and
pr = Prob{X =k}

- (Z)pk(l—p)n_k k=0,1,2,...,n. O

What happens when n — oo, p — 0, but np — a in Example 67

Dk n! (k=D n—k+1)! pF1—pnk
Pr—1 B kl(n — k)! n! pF1(1 — p)n—ktt
_ on—k+1 p
B k 1—p
wp—(k=1p a
k(1 —p) k

as n — 00, p— 00, NP — a

Thus
a a a a*
— — . — — —_
Pk P 1 Do k,po
a\m N
Po = (1—p)"~(1——> — e "as n — 0.
n
ok
Thus the sequence p, — e‘“ﬁ 0.

Definition: The random variable X with Rx = {0, 1,2, -- -} and probability
mass function given by,

pr = Prob (z =k)

= e k=0,1,2,--



is called a Poisson random variable. We have shown that the binomial —
Poisson.

Example 7: (Lottery) How many lottery tickets should I buy to make the
probability of winning at least €7

Solution: In a lottery, out of a total of N tickets, there are M winning

M
tickets. A purchase is a Bernoulli trial with probability p = N A set of n

purchases is a sequence of n Bernoulli trials, with Prob (holding k& winning

M
tickets) = %e‘“ (approximately) where a = np = nT We are asking to
choose n
so that, e < 1—=P0)=1-—¢e",
equivalently, e < 1—¢o0r e N <1—ck¢,
. nM
equivalently, N < In(l—e),
) nM
equivalently, N > —In(1—c¢),
N
equivalently, n > —Mln(l —€) a

Cumulative Distribution Function

As already discussed, it is possible to work with Ry instead of €2. Similarly,
instead of probabilitites defined on an algebra A of interesting events, one
can work with an equivalent concept of the cumulative distribution function.

Definition: Let X be a random variable. The cumulative distribution func-
tion associated to X denoted as the ¢-d - f- Fx(-) is defined by
Fx(z) = Prob{we : X(w) <z} O

Knowing the ¢ - d - f- we can determine interesting probabilities.

Suppose 1 < T
Prob {weQ : 21 < X (w) < 29} = Prob {weQ : X(w) < z9}—Prob {weQ) : X (w) < z1}

This follows from the disjoint union,

{w: X(w) <z} ={w: X(w) <z} U{w:a; < X(w) <z}

7



For a discrete random variable X with sample space {2 and range

Rx = {$1,$2,x3; e }

where the x;’s are ordered xj < xpyq k=1,2,...,
and probability mass function given by,

pr = P(X = x3) = Prob{w : X(w) = x4},

the cumulative distribution function is given by,
Fx(z) = ZpkU(fE — Ty)
k=1

Here U(z — x4,) is the unit step function

{0 T < Ty

1 T = T

Uz — )

This follows directly from the definition. The resulting picture of the ¢ - d - f-
is that of a staircase function.

!
-
| | | | |
le |‘r2 ng I$4 |335

fig. 3 T
The jump at x = xj is py.

Irrespective of whether a random variable is of the discrete variety or some-
thing else, the very definition of the ¢ - d - f- leads to some basic properties.



(1) Fx(x) > 0 VreR
lim
(i) x— —o0 Fx(z) = 0
lim
r— 400 Fx(z) = 1
(141) x,y such that z < y = Fx(z) < Fx(y)
(monotone increasing property)
(1v) Fx is right continuous, i.e.

lim

Fx(z) = h10, Fx(z+h)

Only the last in the list above requires some extra concepts which we con-
sider beyond our scope.

The random variable in Example 1, the lifetime 7" of a bulb, it not a discrete
random variable. So, we do not speak of a probability mass function in this
case. Instead, one can start directly from a cumulative distribution function
as a given (from physics or from experimental data). The following ¢ - d - f-
seems natural,

l—e™, t>0
Fr(t) = {0 <0
Thus P(T>t) = 1—P(T<t) t>0
1—(1—e™)
—At

(&

Here A > 0 is a parameter. The formula above implies that long lifetimes
are highly unlikely. It implies more. What is the probability that the bulb
will last an extra time 0, given that it has lasted until time a ? This is,



P{T > a+0|T > a}
PHT >a+ 6} N{T > a})

P{T > a}
P{T > a+ 6}
~  P{T>a}
o= Ma+d)
e—\a
= W O

The above formula suggests that your (or bulb’s) present age is immaterial
to how much longer you (or the bulb) will live. This memory-less property
may be unrealistic and one may want a different one. Notice that in the
present instance, one can differentiate Fr to obtain (fixing-up things at 0),
the density

pr(t) =

The graph of py is as in figure 4.a. We call T" an exponential randon
vaiable.

pr pbr

fig. 4

10



A better choice of density might be as in fig. 4(b). We now are led to the
following;:

Definition: A random variable X is said to be continuous if the associated
cumulative distribution can be expressed as

fx<x>— /“ px(y)dy

—0o0

for a suitable piecewise continuous function px which we will call the proba-
bility density function (p -d-f-) of X. It follows that

dFx
pxle) =

and by the properties of the ¢ - d - f-, we conclude

px(z) = 0 zeR

/_OO px(y)dy = 1

o

b
Prob{a < X <b} = / px(y)dy

NOTE: Even for discrete random variables, if one is willing to work with

d
Dirac delta functions, we can use 6(x — ) = d—U(w — x3,) to write
x

o0
px() = S pd(z — )
k=1
This is a convenient mnemonic but not essential.
Example 8: (Uniform Distribution) Suppose a point £ is “marked at ran-
dom” in an interval [a, b]. This means that the probability of the mark falling
in the sub-interval [/, "] C [a,b] does not depend on the location of [¢', £"],

just the length of the subinterval = £” — ¢’.

Let P(s) denote the probability of falling into a subinterval of length z. Then,
P(zx+1t) = P(s)+ P(t)

11



by hypothesis (and axion of addition). This is true for all s, ¢ such that the
subintervals are in [a, b].

Essentially, one function satifies the above functional equation: P(s) =k - s

and k = ;= because P(b—a) = 1. Thus

P <¢<)
f” . 5/
b—rc

E// 1
= / dx
¢ b —a

Thus the random variable £ is continuous with density

1 a<x<b

pe(w) = {8__(1 x ¢ |a,b] H

Example 9: (Service System) Suppose customers arrive into a service system
according to the law:

N, = number of arrivals in the time
interval [0, ¢] (counter)
At)"
Prob{N;, =n} = e‘Atg n=20,1,1,...
n!
The parameter A is called the rate of the arrival process. Let t, = time

instant of n'* arrival. Let T = time to the next arrival.
Prob{T < ¢} =1— P{T > ¢}

Proceeding on the assumption that the time t, is as good an origin of time
as 0 for the Poisson counter,

P{T > 6§} = P{N;=0}
— oM

So P{T <6} = 1—e

12



The interarrival time random variable 7" is what we call an exponential

random variable, short for exponentially distributed. One can prove (later)
that the assumption above is correct.

Example 1 0: (Gaussian random variable) X is a Gaussian random vari-

able if it has a density

px(z) = %exp(ﬂ) — 00 < x <00

where peR and 6 > 0 are parameters.

px(x)

fig- 5

What do these parameters signify? p is the point about which px is sym-
metric. ¢ measures the spread of the density function. Greater o is greater
is the spread. What is ¢? ¢ has to ensure that

/ pxdr = 1.

00 _ 2
Thus c = / exp —u dx
oo 202

00 a2
= / exp <%) dy  (change variable y=x —o0)

oo

= \/50/ exp(—2z%)dz (change z = —%-)

\/ﬁcr
[e%e)

13



What is / e~*dz ? First denote it as I. Then

I’ = / e_z2dz/ e~ dw
= / / o~ ) o dw,

a double integral on the (z,w) plane.

Do a change of variable, (z,w) — (r,0) where z = rcos(d), w = rsin(0).
Then 22 +w? = r?,  dzdw = rdrdf and,

[e’e] 2T
I’ = / / e " rdrdd
o Jo
= 27 / e "rdr
0

2 o
= 5[ ey (y=r?)
0

= 7
Hence I = /7
Thus, ¢ = V2 0 \/T = V270, so the Gaussian density is

px(z) = - {—M} :

om0 202

We also refer to X as a normal random variable denoted as,
X ~ N(p,0?) 0

Example 11: (Cauchy random variable, also sometimes referred to as
Lorentzian) A random variable X is said to be a Cauchy random variable
if

1
1+ (2 — x0)?

N | =

pX(Jf) = —o0o<r <o

with graph symmetrical about zy (see figure 0).

14



To

Jig. 6

The graph decays slower than that of the Gaussian as z — oo. O

We now introduce a new concept of quantifying an uncertain or random func-
tion. This involves the process of averaging.

Suppose a chance experiment, repeated n times, produces the observations

X1, T, X3, -, x,, of arandom variable X. Consider the average
AUQ(X) _ $1+£E2++$n
n

It has the properties:

(i)  Suppose X > 0,i.e. Rx C [0,00),then
Avg(X) > 0.

(ii) Avg(cX) = cAvg(X)

(iii) Avg(X +Y) = Avg(X) + Avg(Y)

(iv) Avg(1) 1

the left hand side, 1 denotes the “random variable” which always takes the
value 1.

If X is a discrete random variable with Rx = {a1, ag, as, - -}, then

15



o0
= E Qi T
i=1
where r; = (number of times «a; occurs)/n

= relative frequency of q;

Recall that for large number of trials r; — p; by the frequentist intepretation
of p;. We are led to substituting p; for r; in the above expression for average,
and hence,

Definition: For a discrete random variable X with Ry = {ay, as, az, -}
and probability mass function given by,

p; = Prob {X = a;} 1=1,2,3,---

the expectation of X is

BX) - Y am =
=1

All of the properties of the average Avg are satisfied by the expectation. For
a continuous random variable X with density px,

E(X) = L/W)xpxﬁwdm

o0

Example 11 (Some expectations)

(a)
X ~ Binomial (n,p)
Rx = {0,1,2,...,n}

n

pr = Prob (X =k)= (k

)ﬁﬂ—ka k=0,1,2,....n

s = S ok( )

16



Thus p

(n—1)!

S

Poisson(a)
{0,1,2,...}
Prob (X = k)

L

17

n—1—Fk+1)!




(c)

For a Poisson arrival process with N, = # arrivals in [0, t] satisfying

)™
Prob(N, =n) = e_)‘t% n=0,1,2,3,...

E(N,) = M
E(N)
t

()

Thus we see a justification for calling A the arrival rate.

(d)

Hence N =

X ~ Uniform ([a,b])

RX = [a,b]
L a<z<bh
_ b—a — —
px(z) = {0 x & la,b]
b
Then, FE(X) = /ab—adm
L a7y,
- b—q?2 @
B b —a? _a+b
- 2(b—a) 2

X ~ N(p,o?

B(X) = /_(:x\/;_ﬂaexp <_(x2%‘2“)2) dz

= /_Z(I—M+M)\/21—7TUGXP (—%) dz

18




- e (S

+u
= 0+ p because the integrand in the first integral is odd
E(X) = p

X ~ Cauchy/Lorentzian

Then E(X) does not exist! Why?

19
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ENEE 324H Lecture 6

Inequalities

Estimating probabilities is necessary where analytic formulas are hard to
find. Finding good estimates (upper and lower bounds) is an art. But there
are some basic estimates derivable from first principles.

1. Markov inequality
Let X be a non-negative random variable. Let u denote the unit step
function

=0

wo ={o 12

Let a > 0. Then it is easy to see that

u(X —a) < %
Then

E(u(X - a)) < E(aX)
But

Eu(X—-a) = 0-Plw: X(w)<al+1-Plw: X(w) > a}

= P(X >a)
Thus
P(X >a) < E(GX)

Remark (a) Since {w: X(w) > a} C{w: X(w) > a}
it follows that
P{w: X(w)>a} < P{w:X(w)=>=a}
E(X)




Remark (b) If the assumption of non-negativity of X is not applicable,
one can still write

P{wilX(w)—u|>a}§E<|X;M|)

where o € R is arbitrary and a > 0. This observation leads to the next
inequality:.

py(¥) P(Y-E(Y)|>3)

= area under density curve

775 marked by hatch lines

EY)-9 E) EY)+0 tail probability

Figure 1: Chebyshev’s inequality estimates the tail-probability

2. Chebyshev inequality
Let Y be any real-valued random variable.
Let X = p+ (Y — E(Y))?
Set a = 62 for o > 0.
Then by Markov’s inequality,

equivalently,

Var(Y
P(|Y — E(Y)| > §) < Yarl¥)




3. Convex functions and Jensen’s inequality
f:R — R is convex if

flax+ (1 —a)y) < af(z)+ (1 — ) f(y)for a € [0,1].

From this, it follows that the derivative f’(z) (if it exists) is increasing
with z, and for any fixed x, there exists a constant A\ such that

f(@) = f(zo) + Az — 20)

The line with slope A, passing through (xg, f(x)) is called the support-
ing line at the point (x¢, f(o)) as in Figure 2.

X X—>

Figure 2

Let g = E(X) for a random variable X. Then,

E(f(X)) = E(f(xo) + AM(X — x0))
= E(f(E(X)))+E\X — E(X))
= f(E(X))+ AE(X) - AE(X)
= [f(E(X))



Thus, for a convex function f,

E(f(X)) = f(E(X))

. Chernoff’s inequality
Let X be any random variable. Given ¢ > 0, define a new random
variable dependent on X,

B 1 if z>ce€
Yo = {O if X<e

For any t, it follows that
etX 2 ete }/e
Hence

E(etX) 2 E(ete Y*E)
— ete E(}/&)
= €“P(X >¢)

(Here we assume existence of relevant expectations.) Hence,
P(X >¢€) <e ' B(e)

The free parameter t in the above inequality can be used to obtain a
tighter estimate,

P(X =€) <inf e B(e!¥)

>0

Here“infimum” stands for the greatest lower bound.



Example: Suppose X is Gaussian with mean 0 and variance 1. Then the
density of X is

PX(SL’) =

e _(@=t)?

2 dx

oo V1w
1
o t2)2
e — e
—eo V2T

2
_ B

Then

. _ 2
inf e te+t2 /2
>0
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