ENEE 350 Notes on Assembly Language Programming C. B. Silio

Looping Example and Call By Reference for the MAC-1

This example is that of a function subroutine that adds up an array of data and returns the
resulting sum in the accumulator (ac) register. In this case the name of the “n” element
array is “data”, which is also the symbolic address of the first entry in the n-element array.
In this case “data” is a one dimensional array; but even if it were a two dimensional array,
or any multidimensional array, with a total of “n” elements (after multiplying the counts of
the numbers of elements in the rows and columns, etc.) it would be stored in memory as a
single column comprising “n” elements (i.e., words) with symbolic starting address “data”
identifying the location of the 15! element of the array, address “data + 1”7 identifying the
274 element, “data + 2” identifying the 3"¢ element, and so on until finally address “data +

n - 17 identifies the n'® element of the array, as seen in the following figure:

symbolic memory address: |memory contents|
data | 1st value |

datart | ond value |

datar2 | Brd value |

data+n-1 | nth value |

By knowing the base address (“data”) one can refer to the elements in the array using
indexed addressing. Location “data” has the same address as location “data + 07, and the
next location is “data + 1”7, etc. On the MAC-1 the only register that can be used as an index
register is the stack pointer (sp) register because it has instructions “insp” and “desp” that
can increment or decrement its contents. On most computers that possess other registers
that can be used as index registers it is much safer to leave the stack pointer inviolable; i.e.,
don’t mess with it because a subroutine call caused by a hardware interrupt can occur at
any time thus overwriting a memory location in the vicinity where the sp currently points.
On the MAC-1, however, interrupts are not possible; so in this case only it is possible to
use the stack pointer register as an index register and point it sometimes at the stack (when
doing calls and returns and retrieving parameters passed to subroutines there) and point it
sometimes elsewhere in memory (such as at the array “data”) when it is desirable to do so.

ENEE 350 Notes on Assembly Language Programming C. B. Silio
Looping Example and Call by Reference for the MAC-1 Continued

Call by reference will be used to pass addresses as parameters to the called procedure.
(This is certainly the case for the array address “data” because it is not efficient in either
memory space usage or time to push for example a thousand values from the array data
onto the stack instead of just a single base address; but call by value could also be used to

communicate the number of elements “n” in the array to the called function because this a
a single value.) The form of the call to the function “asum” is as follows:

z = asum(n,data)

The sum of the array elements in the array data will be returned in the accumulator (ac)
register, and the calling program will (upon return from the function) store the result in
location “z”. Following the C compiler parameter order convention, we assume that the
address “data” is pushed onto the stack first, followed by the address “n”. Upon entry to

the function “asum” the stack looks like this:

sp ---> 4017 |Return address |

4018 | Address n |

4019 | Address data |

4020 | ? |

So that the entire function code appears together on one page, the MAC-1 code for function
asum is shown on the next page.

ENEE 350 Notes on Assembly Language Programming C. B. Silio
Looping Example and Call by Reference for the MAC-1 Continued

/integer function asum

ENTRY asum /Declare label asum as entry point
savsp RES 1 /Reserve a place to save sp register contents
cnt RES 1 /Reserve a location for the loop count value
tsum RES 1 /Reserve a location to hold the accumulated sum
asum lodl 1 /Pick up first parameter value; address n
pshi /Push content of address n onto stack
pop /Get contents of n into the ac register
stod cnt /Put value (n) into location cnt
loco 0 /Clear the ac to zero
stod tsum /Initialize accumulated sum to zero
lodl 2 /Pick up 2nd parameter value; array base address ‘‘data’’
swap /Put address ‘‘data’’ in sp and get sp content into ac
stod savsp /Save sp content where it points into the stack
loop lodd cnt /Pick up loop count value
subd (1) /Decrement the count value
stod cnt /Save the current value of the loop counter
jneg done /If loop count goes negative, we are done
lodd tsum /Pick up current sub total in ac
addl 0 /Add to ac content of current array element; at m(sp)
stod tsum /Put subtotal away before using ac for another purpose
insp 1 /Bump up array pointer: data+l, data+2, etc.
jump loop /Jump back to top of loop until done
done lodd savsp /Pick up pointer back to the stack area of memory
swap /Put it into the stack pointer register
lodd tsum /Leave the final array sum value in the ac register
retn /Return
END

