16 Load- Reg 16 R1
AND Decoder 4
16cEB !
16 CE-A : R2 4
: Decoder
o Run/
"""""""""" S e %" 4-Phase [T | Stop
”””””””””””””” T2 a ock Reset
A- Bus B-Bus ! | e T1 Cenerator

. |Registers

1 AC
2 SP

I ncr enent
| MPC + 1

256 wds X 12 bits Control
(ROM RAM EPROV)

PROM

Store

;

> R
oP R1 R2
2
4 4 4
oP
Decoder
2
2

Figure 1: Block diagram for vertically microprogrammed microarchitecture (Mic-2)

MIC-2 Control Signals

A E
M N M M

OpCode ALU SHFT | Latch | U C A|B|R|W| COND
Decimal | Mnemonic | F1 | FO | S1 | SO NZ X|AND R | R |D|R |C1]|CO0

0 ADD T T

1 AND + + +

2 MOVE + + +

3 COMPL + + + +

4 LSHIFT + + + +

5 RSHIFT + + + +

6 GETMBR + + + +

7 TEST + ¥

8 BEGRD + + +

9 BEGWR + + | + +

10 CONRD + +

11 CONWR + +

12

13 NJUMP + +

14 ZJUMP + +

15 UJUMP + + +

Control signals generated by the opcode decoder for each mic2 microinstruction opcode. Note: A
plus means the signal is asserted (i.e., set equal to 1); a blank means it is negated (i.e., set equal
to 0). The two clocked D-latches used to remember the N and Z signals coming from the ALU
are controlled by the “Latch NZ” signal, which is ANDed with timing signal T4; so that if the
Latch NZ signal is asserted (i.e., equal to 1) and it is timing phase T4, then the clock line into
the N and Z latches goes to logic 1 and these latches copy and hold the ALU’s N and Z signal
values, respectively, for later use by either a ZJUMP or NJUMP microinstruction. The Latch NZ
control signal generated by the opcode decoder and the addition of the N and Z latches are the
main differences between the mic2 and the micl; the remaining 12 control signals generated by
the mic2’s opcode decoder are the same as those used to control the micl’s data path and, thus,
perform the same functions as those specified in the Microinstruction format (32-bit word) for the
micl.

Figure 2: Mic-2 opcode decoding and control signals

MIC-2 OpCodes

OpCode | Mnemonic Meaning
Binary | & Operands Instruction or Action

0000 ADD rl,r2 Addition rl:=rl+4r2

0001 AND rl,x2 Boolean AND rl:= r1.AND.r2 = band(rl,r2)

0010 MOVE rl,r2 Move register rl:=r2

0011 COMPL rl,r2 | Complement rl:= inv(r2)

0100 LSHIFT rl,r2 | Left shift rl:= Ishift(r2)

0101 RSHIFT rl,r2 | Right shift rl:= rshift(r2)

0110 GETMBR rl Store MBR in register | rl:= mbr

0111 TEST r2 Test register if r2<0 then N:=1; if r2=0 then Z:=1

1000 BEGRD rl Begin read mar:= rl; rd

1001 BEGWR rl,r2 | Begin write mar:= rl; mbr:=r2; wr

1010 CONRD Continue read rd

1011 CONWR Continue write wr

1100 (not used)

1101 NJUMP r Jump if N=1 if n then go tor

1110 ZJUMP r Jump if Z=1 if z then go tor

1111 UJUMP r Unconditional jump gotor

Note: r = 16*rl + r2; i.e., i.e., r is the 8-bit concatenation [r1r2] of the two 4-bit fields specified
by rl and r2 in the left to right order r1 followed by r2. In translating this assembly code decimal
value r is converted to an 8-bit binary value (0 < r < 255) and the high order 4 bits are placed
in the rl field and the low order 4 bits are placed in the r2 field. Also, rl and r2 are each a 4-bit
designator for one of the 16 CPU registers in the scratchpad, and both could, if desired, specify the
same register in a valid mic2 instruction. Furthermore, the notation “if r1 < 0” means that “if the
contents of the register named in the rl field is less than zero” then do something. In this case N
and Z refer to D-latches that save the combinational values coming out of the ALU on the n and z
output wires if enabled to do so by NZ control signal.

Figure 3: Table of Mic-2 (micro) Instructions

