698 FLOATING-POINT NUMBERS APP. B

number consists of a | in the rightmost bit, with the rest being 0. The exponent
represents 27'°® and the fraction represents 27 so the value is 27'*°. This
scheme provides for a graceful underflow by giving up significance instead of
jumping to 0 when the result cannot be expressed as a normalized number.

Two zeros are present in this scheme, positive and negative, determined by
the sign bit. Both have an exponent of 0 and a fraction of 0. Here too, the bit to
the left of the binary point is implicitly 0 rather than 1.

Overflow cannot be handled gracefully. There are no bit combinations left.
Instead, a special representation is provided for infinity, consisting of an exponent
with all 1s (not allowed for normalized numbers), and a fraction of 0. This
number can be used as an operand and behaves according to the usual mathemati-
cal rules for infinity. For example infinity plus anything is infinity, and any finite
number divided by infinity is zero. Similarly, any finite number divided by zero
yields infinity.

What about infinity divided by infinity? The result is undefined. To handle
this case, another special format is provided, called NaN (Not a Number). It too,
can be used as an operand with predictable results.

PROBLEMS

1. Convert the following numbers to IEEE single-precision format. Give the results as
eight hexadecimal digits.

a. 9

b. 5/32
c.—5/32
d.6.125

2. Convert the following IEEE single-precision floating-point numbers from hex to
decimal:

a. 42E48000H
b. 3F8R000C0H
¢. 00800000H
d. C7FO0000H

3. The format of single-precision floating-point numbers on the 370 has a 7-bit exponent
in the excess 64 system, and a fraction containing 24 bits plus a sign bit, with the
binary point at the left end of the fraction. The radix for exponentiation is 16. The
order of the fields is sign bit, exponent, fraction. Express the number 7/64 as a nor-
malized number in this system in hex.

4. The following binary floating-point numbers consist of a sign bit, an excess 64, radix
2 exponent, and a 16-bit fraction. Normalize them.

a. 0 1000000 0001010100000001




APP. B PROBLEMS 699

5.

10.

b. 00111111 00000011 E1111111
¢. 0 1000011 1000000000000000

To add two floating-point numbers, you must adjust the exponents (by shifting the
fraction) to make them the same. Then you can add the fractions and normalize the
result, if need be. Add the single-precision [EEE numbers 3EEO0000H and
3D800000H and express the normalized result in hexadecimal.

. The Tightwad Computer Company has decided to come out with a machine having

16-bit floating-point numbers. The Model 0.001 has a floating-point format with 2
sign bit, 7-bit, excess 64 exponent, and 8-bit fraction. The Model 0.002 has a sign bit,
5-bit, excess 16 exponent, and 10-bit fraction. Both use radix 2 exponentiation. What
are the smallest and largest positive normalized numbers on both models? About how
many decimal digits of precision does each have? Would you buy either one?

. There is one situation in which an operation on two floating-point numbers can cause

a drastic reduction in the number of significant bits in the result. What is it?

. Some floating-point chips have a square root instruction built in. A possible algorithm

is an iterative one (e.g., Newton-Raphson). Iterative algorithms need an initial
approximation and then steadily improve it. How can one obtain a fast approximate
square root of a floating-point number?

Write a procedure to add two IEEE single-precision floating-point numbers. Each
number is represented by a 32-element Boolean array.

Write a procedure to add two single-precision floating-point numbers that use radix 16
for the exponent and radix 2 for the fraction but do not have an implied 1 bit to the left
of the binary point. A normalized number has 0001, 0010, ..., 1111 as the leftmost 4
bits of the fraction, but not 0000. A number is normalized by shifting the fraction left
4 bits and subtracting 1 from the exponent.



