
Purpose
is project is intended to help you understand in detail how a pipelined microprocessor works. You
will build a pipelined RiSC-16, complete with data forwarding, simple branch prediction, and speculative
execution. e next project will add caches and precise interrupts. For details on the RiSC-16 pipeline, see
the document e Pipelined RiSC-16 on the class website.

Pipelines
In the previous project, you built a sequential processor, similar to what is described in the document
RiSC-16: Sequential Implementation. e document shows the control flow and data flow for each
instruction, as well as the final hardware implementation that changes its dataflow based on the
instruction opcode. In a sequential implementation, the entire instruction must be executed before the
next clock, at which point the results of the instruction are latched in the register file or data memory.
is results in a relatively long clock period.
e computer market is not fond of slow clocks, however. Increased clock speeds are possible as the
amount of logic between successive latches is decreased. If execution is sliced up into smaller sub-tasks,
the clock can run as fast as the longest sub-task. eoretically, a pipeline of N stages should run with a
clock that is N times faster than a sequential implementation. For many reasons, this theoretical limit is
never reached, due to latch overhead, sub-tasks of unequal length, etc. Nonetheless, extremely fast clock
rates are possible. Slicing up the instruction execution this way is called pipelining, and it is exploited to
great degree in nearly every aspect of modern computer design, from the processor core to the DRAM
subsystem, to the overlapping of transactions on memory and I/O buses, etc.
e RiSC-16 pipeline is shown in Fig. 1 on the next page. It is similar to the 5-stage DLX/MIPS
pipeline that is described in both Hennessy & Patterson and Patterson & Hennessy, and it fixes a few
minor oversights, such as lack of forwarding to store data, lack of forwarding to comparison logic in
decode implementing the 1-instruction delay slot, etc. is pipeline adds in forwarding for store data
and eliminates branch delay slots. As in the DLX/MIPS, branches are predicted not taken, though
implementations of more sophisticated branch prediction are certainly possible.
In the figure, shaded boxes represent clocked registers; thick lines represent 16-bit buses; thin lines
represent smaller data paths; and dotted lines represent control paths. e figure illustrates how
pipelining is achieved: the sub-tasks into which instruction execution has been divided are instruction
fetch, instruction decode, instruction execute, memory access, and register-file writeback. Each of these
sub-tasks, which is executed by dedicated hardware called a pipeline stage, produces intermediate results
that must be stored before an instruction may move on to the next stage. By breaking up execution into
smaller sub-tasks, it is possible to overlap the different sub-tasks of several different instructions
simultaneously. If the intermediate results of the various sub-tasks are not stored, they would be lost:
during the next cycle another instruction would use the same hardware for its own task. For instance,
after an instruction is fetched, it is necessary to store the fetched instruction somewhere, because the
output of the instruction memory will be different on the following cycle—the fetch stage will be
fetching a completely different instruction.
e storage locations for the intermediate results are called pipeline registers, and the figure illustrates
their contents. It is common to label a pipeline register with the two stages that it divides. For example,

ENEE 350: Computer Organization — Project 3 (10%)

1

Project 3: Pipelined RiSC-16 (10%)

ENEE 350: Computer Organization, Fall 2009
Assigned: Thursday, Oct 29; Due: Tuesday, Nov 10

ENEE 350: Computer Organization — Project 3 (10%)

2

ENEE 350: Computer Organization

—

 Project 3 (10%): Pipelined RiSC-16

2

REGISTER FILE

SRC1SRC2

TGT

Program Counter

INSTRUCTION
MEMORY

OP rA rCrB PC

Sign-Ext-7

SRC1

TGT

SRC2

PCOP rT OPERAND2 OPERAND1

CTL6

EQ!
CTL3

s2s1

CTL5

rT STORE DATAOP

+1

DATA
MEMORY

ADDRDATA IN

RF WRITE DATArT

DATA OUT
CTL2 WEdmem

CTL1

WErf

FETCH

STAGE

DECODE

STAGE

EXECUTE

STAGE

MEMORY

STAGE

WRITEBACK

STAGE

RF WRITE DATArT

Left-Shift-6

MUXpc

MUXs2

MUXalu2

MUXalu1

MUXout

FUNCalu

Fig. 1: RiSC-16 5-stage pipeline

Pstomp
SRC2 SRC1

ALU OUTPUT

OPERAND0

CTL4 MUXimm

MUXop0

CTL7

IF

ID

EX

MEM

ID

EX

MEM

WB

WB

END

PC

+1

ADD

Pstall

PC

the pipeline register that divides the instruction fetch (IF) and instruction decode (ID) stages is called
the IF/ID register; the register that divides the instruction execute (EX) and memory-access (MEM)
stages is called the EX/MEM register; etc.
Note that neither the WB/END register nor the data-forwarding path it supports is present in the
DLX/MIPS architecture described by Hennessy & Patterson. e DLX/MIPS assumes a half-cycle
register-file access, so that the writeback stage completes in the first half of the cycle and the register-file
read component of the decode stage happens in the second half of the cycle. is allows data to be
forwarded from the writeback stage to the decode stage directly. Otherwise such forwarding is
impossible, unless the register file has a pass-through design that connects data-in to data-out whenever
reading and writing the same register. If the register file does not do such forwarding, then the data
written to the register file is only available on the following cycle. us, there must be a path to forward
data to the instruction in the decode stage at the same time as the instruction writing to the register file
in the writeback stage. is is the function of the WB/END register and the forwarding stage it
represents.

C Implementation
e descriptions given above are suitable for an actual circuit design, but we will not get that detailed.
Instead, you will build this pipeline in C, which should be much easier. I will give you skeleton code
(available on the class project website) that does much of the grunt-work for you.

Datapath
e shared-bus style of Homework 3’s implementation is not suitable for pipelining, because it is
impossible for more than one instruction to use the bus at the same time. So for this project we will use
a datapath similar to the one described in Chapter 6 of Patterson and Hennessy. Of course, since the
MIPS and RiSC-16 are slightly different, we will have to make a few minor changes to the book’s
datapath.

1. Instead of a “4” input in the PC’s adder, we will use a “1”, since the RiSC-16 is word-addressed
instead of byte-addressed.

2. e instruction bit fields have to be modified to suit the RiSC-16’s instruction-set architecture.
3. e “shift left 2” component is not necessary, since the immediate values for branches and the

PC use word-addressing.
One of the most noticeable differences between Project 3 and the pipelining done in the book is that
we add a pipeline register AFTER the write-back stage (the WBEND pipeline register). is will be
used to simplify data forwarding so that the register file does not have to do any internal forwarding.

Memory

Note in the typedef of state_t below that there are two memories: instrMem and dataMem. When
the program starts, read the machine-code file into BOTH instrMem and dataMem (i.e. they’ll have
the same contents in the beginning). During execution, read instructions from instrMem and perform
load/stores using dataMem. at is, instrMem will never change after the program starts, but
dataMem will change.

C-Language Pipeline Registers

To simplify the project and make the output formats uniform, you must use the following structures
without modification to hold pipeline register contents. Note that the entire instruction is passed down
the pipeline.

ENEE 350: Computer Organization — Project 3 (10%)

3

#define MAXMEMORY 65536 /* maximum number of data words in memory */
#define NUMREGS 8 /* number of machine registers */

#define ADD 0
#define ADDI 1
#define NAND 2
#define LUI 3
#define LW 4
#define SW 5
#define BEQ 6
#define JALR 7

#define NOP_INSTRUCTION 0x0000

typedef struct IFIDStruct {
 short instr;
 short pcPlus1;
} IFID_t;

typedef struct IDEXStruct {
 short instr;
 short pcPlus1;
 short readReg1;
 short readReg2;
 short offset;
} IDEX_t;

typedef struct EXMEMStruct {
 short instr;
 short branchTarget;
 short aluResult;
 short readReg2;
} EXMEM_t;

typedef struct MEMWBStruct {
 short instr;
 short writeData;
} MEMWB_t;

typedef struct WBENDStruct {
 short instr;
 short writeData;
} WBEND_t;

typedef struct stateStruct {
 short pc;
 short instrMem[MAXMEMORY];
 short dataMem[MAXMEMORY];
 short reg[NUMREGS];
 short numMemory;
 IFID_t IFID;
 IDEX_t IDEX;
 EXMEM_t EXMEM;
 MEMWB_t MEMWB;
 WBEND_t WBEND;
 int cycles; /* number of cycles run so far */
} state_t;

Problem
Basic Structure

Your task is to write a cycle-accurate simulator for the RiSC-16. At the start of the program, initialize
the pc and all registers to zero. Initialize the instruction field in all pipeline registers to the nop
instruction (0xe000).
e main run() function will be a loop, where each iteration through the loop executes one cycle. At
the beginning of the cycle, print the complete state of the machine (use the printState function at the
end of this handout without modification). In the body of the loop, you will figure out what the new
state of the machine (memory, registers, pipeline registers) will be at the end of the cycle. Conceptually
all stages of the pipeline compute their new state simultaneously. Since statements execute sequentially
in C rather than simultaneously, you will need two state variables: state and new. e variable state
contains the state of the machine while the cycle is executing; the variable new will be the state of the

ENEE 350: Computer Organization — Project 3 (10%)

4

machine at the end of the cycle. Each stage of the pipeline will modify the new variable using the
current values in the state variable. E.g. in the ID stage, you will have a statement like

new.IDEX.instr = state.IFID.instr;

(to transfer the instruction in the IFID register to the IDEX register)
In the body of loop, you will use new ONLY as the target of an assignment and you will use state
ONLY as the source of an assignment (e.g. new... = state...). In general, state should never appear on
the left-hand side of an assignment, and new should never appear on the right-hand side of an
assignment.
Your simulator must be pipelined. is means that the work of carrying out an instruction should be
done in different stages of the pipeline as done in the textbook, and the execution of multiple
instructions should be overlapped. e WB stage should be the only stage that writes to the register file;
other stages should write to the pipeline registers. e ID stage should be the only stage that reads the
register file; the other stages must get the register values from a pipeline register.
Here’s the main simulator loop:

while (1) {

 printState(state);

 /* check for halt */
 if (opcode(state.MEMWB.instr) == HALT) {
 printf(“machine halted\n”);
 printf(“total of %d cycles executed\n”, state.cycles);
 exit(0);
 }

 memcpy(&new, state, sizeof(state_t);
 new.cycles++;

 /* --------------------- IF stage --------------------- */

 /* --------------------- ID stage --------------------- */

 /* --------------------- EX stage --------------------- */

 /* --------------------- MEM stage --------------------- */

 /* --------------------- WB stage --------------------- */

 memcpy(state, new, sizeof (state_t));
 /* this is the last statement before end of the loop.
 It marks the end of the cycle and updates the current
 state with the values calculated in this cycle */
}

Please use some sort of commenting like this so that we can easily identify what stages or your
simulated pipeline are doing what. Without commenting, we will assume that everything happens all at
once (i.e. no pipelining, therefore wrong).

Halting

At what point does the pipelined computer know to halt? It is incorrect to halt as soon as a halt
instruction is fetched because if an earlier branch was actually taken, then the machine might actually
branch around the halt instruction, in which it will be squashed and not executed.
To solve this problem, halt the machine when a halt instruction reaches the MEMWB register. is
ensures that previously executed instructions have completed, and it also ensures that the machine
won’t branch around this halt. is solution is shown above; note how the final printState call before
the check for halt will print the final state of the machine.

ENEE 350: Computer Organization — Project 3 (10%)

5

Begin Your Implementation Assuming No Hazards

e easiest way to start is to first write your simulator so that it does not account for data or branch
hazards. is will allow you to get started right away. Of course, the simulator will only be able to
correctly run assembly-language programs that have no hazards. It is thus the responsibility of the
assembly-language programmer to insert nop instructions so that there are no data or branch hazards.
is means putting a number of nops in an assembly-language program after a branch and a number of
nops in an assembly-language program before a dependent data operation (it is a good exercise to figure
out the minimum number needed in each situation).

Finish Your Implementation by Accounting for Hazards
Modifying your first implementation to account for data and branch hazards will probably be the
hardest part of this assignment.
Use data forwarding to resolve most data hazards. I.e. the ALU should be able to take its inputs from
any pipeline register (instead of just the IDEX register). ere is no need for forwarding within the
register file (as the book has). For this case of forwarding, you’ll instead forward data from the
WBEND pipeline register. Remember to take the most recent data (e.g. data in the EXMEM register
gets priority over data in the MEMWB register). Only forward data to the EX stage.
You will need to stall for one type of data hazard: a lw followed by an instruction that uses the register
being loaded.

Static Branch Prediction
Assume branch-not-taken for forward branches (those with a positive immediate value) and branch-
taken for backward branches (those with a negative immediate value). is requires you to discard
instructions if it turns out that the predicted direction was incorrect. To discard instructions, change the
relevant fields in the pipeline to the nop instruction (0x0000).

Running and Demonstrating Your Program
Your simulator should be run using the same command format specified in Project 1, that is:

simulate code > output

I will give you skeleton code to use as a starting point. You should use the solution assembler from
Project 1 to create the machine-code file that your simulator will run (since that’s how we’ll test it).

Grading and Formatting
We will grade almost solely on functionality. In particular, we will run your program on various
assembly-language programs and check the contents of your memory, registers, and pipeline registers at
each cycle. Most of these assembly-language programs will have hazards; a few will be hazard-free.
Since we’ll be grading on getting the exact right answers (both at the end of the run and being cycle-
accurate throughout the run), it behooves you to spend a lot of time writing test assembly-language
programs and testing your program. Programs that are not doing exactly what they’re supposed to on
every cycle will be penalized heavily, so check carefully.
We will use a program to compare your output against a solution output. So it’s very important that
you follow these exact formatting rules:

1. Don’t modify printState at all.

ENEE 350: Computer Organization — Project 3 (10%)

6

2. ere should be ONLY ONE call to printState in your program. Do not put in any extra
printState calls (you can put these in for debugging, but take them out before submitting the
program).

3. Make sure to initialize all values correctly.
 a. state.numMemory should be set to the number of words in the machine-code file.
 b. state.cycles should be set to 0.
 c. pc and all registers should be set to 0.
 d. the instruction field in all pipeline registers should be set to the nop instruction.

4. Check your program’s output on the sample assembly-language programs and output that I
will give you.

Having events happen on the right cycle will also be very important (e.g. stall the exact number of
cycles needed, write the branch target into the PC at exactly the right cycle, halt at the exact right cycle,
stalling only when needed).

Turning in the Project
I will get the submit function up and running shortly … there will be an autograder that returns the
results of correctness tests to you within several minutes. You need submit nothing else.

ENEE 350: Computer Organization — Project 3 (10%)

7

