
is project will give you a basic understanding of ModelSim and the Verilog hardware description
language (HDL). ModelSim is an IDE for hardware design which provides behavioral simulation of
a number of languages, i.e., Verilog, VHDL, and SystemC. e Verilog HDL is an industry
standard language used to create analog, digital, and mixed-signal circuits. HDL’s are languages
which are used to describe the functionality of a piece of hardware as opposed to the execution of
sequential instructions like that in a regular software application. Both of these tools are used
extensively in industry, so knowing how to use them can be beneficial later in your career.

ModelSim Tutorial
Luckily, there is a free, student version of ModelSim that can be downloaded from the following
location (NOTE: If you do not have access to a Windows based computer, ModelSim is installed in
the Windows labs of A.V. Williams):

• http://www.model.com/resources/student_edition/download.asp

Follow the instructions on the page to install the program and obtain a student license, which they
will send to you via e-mail.

Once you have received the license and everything has been properly installed, ModelSim should
execute without issue. Navigate to the Help->PDF Documentation pull-down menu and select
Tutorial from the list. ankfully, ModelSim has provided a simple explanation on the basic use of
the application.

Read through and follow along sections 1-4 and 6 (Using Verilog)

° Note: e ModelSim tutorial will not instruct you on the syntax/use of Verilog. Just use
their files for now and explanations will follow later in this project.

Verilog Basics
Now that you have a basic understanding of ModelSim, the following will give you some idea of how
the Verilog language works. It is important to remember that the language is meant to model the
functionality of physical hardware; thus, the language does not run as a sequential program like you
are used to, where each step in a sequence of steps executes after the previous step has finished. In
Verilog, as in hardware, all logic executes simultaneously. is is understandably confusing at first,
but with practice it will become more intuitive.

AND Gate

e first step will be to create a module, the fundamental building block in Verilog. A module
represents the fundamental building block of hardware: a piece of combinatorial or sequential logic.

ENEE 359a: Digital VLSI Circuits — Project 1

1

Project 1: ModelSim Tutorial and Verilog Basics
ENEE 359a: Digital VLSI Circuits, Spring 2008
Assigned: Thursday, Feb 7; Due: Tuesday, Feb 19

http://www.model.com/resources/student_edition/download.asp
http://www.model.com/resources/student_edition/download.asp

1. Start by selecting the Project tab in ModelSim. Right-click on the HDL folder you created
during the ModelSim tutorial and select Add To Project -> New File. Select the appropriate
fields so that the dialog looks like this:

After you click OK, double-click on the file to open it in the ModelSim editor.

2. Add the following text to the file :

module and2_1bit (a,b,c);
 input a;
 input b;
 output c;

 assign c = a&b;
endmodule

Save the file, select and right-click on it in the Project tab, and choose Compile -> Compile
Selected. You should see a success message printed in the Transcript window at the bottom.
Take a moment to look at the structure and syntax of the code you compiled, which
describes a 1-bit, 2-input AND gate. ings to note:

° Semicolon after module declaration

° All signals in the Port List must be declared as either an input or output before they are
used

° endmodule is one word and is not followed by a semicolon

° A naming convention for your modules will make your life infinitely easier – my
convention above lists the number of inputs after the gate type followed by the number
of bits of each input. You can have your own convention – just stick with it.

Once the file has been successfully compiled, select the Library tab and expand your Work
library. You should now see and2_1bit listed as a module. We now have a 1-bit, 2-input
AND gate to use in our designs. Too bad they aren’t very useful. Let’s make something a
little more worthwhile.

ENEE 359a: Digital VLSI Circuits — Project 1

2

3. Return to the editor and add the following text to the end of the file we were just working
on :

module and2_32bit(a,b,c);
 input [31:0] a;
 input [31:0] b;
 output [31:0] c;

 assign c = a&b;
endmodule

is module performs a bit-wise AND on 2, 32-bit inputs, as you probably have guessed.
Note how multiple bit-width inputs are declared. Similar to arrays in C, using the square
bracket indicates that the signal is more than one bit. e most-significant-bit is listed first,
and the least-significant-bit is second. Compile the file again and check your Work library.
You will now see both your 1-bit and 32-bit AND gates listed.

° Note: Since you are allowed to have multiple modules per file, it is a good idea to keep
similar modules in the same file to avoid clutter

Additional Gates: OR and XOR

1. Create and compile similar files for an OR and XOR gate of various bit-widths (two modules
for each logical function: OR and XOR gates of 1 bit and 32 bits).

Full Adder

Now that we have the basic building blocks of a digital system, we will create something useful: an
adder. According to wikipedia “A full adder is a logical circuit that performs an addition operation
on three binary digits. e full adder produces a sum and carry value, which are both binary digits.”

e truth table for a full adder can be seen below. From the truth table we can reason that the block
diagram can be created from the following logic (also from wikipedia):

You are now going to implement this in Verilog using the modules you have already created.

ENEE 359a: Digital VLSI Circuits — Project 1

3

1. Under the Project tab, add a new Verilog file to your HDL directory called fullAdder.v and
fill it with the following text:

module fullAdder(a,b,cin,
 s,cout);
 input a;
 input b;
 input cin;
 output s;
 output cout;

 wire aXORb;
 wire cANDaXORb;
 wire aANDb;

 xor2_1bit XORgate1 (a,b,aXORb);
 xor2_1bit XORgate2 (aXORb,cin,s);
 and2_1bit ANDgate1 (cin,aXORb,cANDaXORb);
 and2_1bit ANDgate2 (a,b,aANDb);
 or2_1bit ORgate1 (cANDaXORb, aANDb, cout);
endmodule

As you can see, there is far more to this module than our previous designs. After the input
and output declarations, we are now declaring several wire objects. ink of these exactly as
how they sound: a wire which will carry a signal from a source to a destination. We will use
these wires to connect our gates together in order to create this full-adder.

After the wire declarations there are module declarations. Here, we instantiate the gates we
have made and connect the appropriate wires to their respective ports. With the block
diagram image above, try and reason about what was done in the code.

° Note: Make sure the order of the wires in your port list is correct for your particular
modules. You may have ordered them differently than in my code.

° Note: Be as verbose as possible with your variable and module names. It will make your/
my life much easier.

2. Assuming your file compiled successfully, you will now simulate the full-adder you just
created. Under the Library tab, expand your Work library and double-click on the module
labeled fullAdder. e ModelSim windows should rearrange themselves and some new text
will appear in the Transcript tab.

° Note: Any action you perform with the user interface also has a corresponding command
which can be executed from the command line. For example, loading a module for
simulation (which you just did by double-clicking) can by done by executing the
command vsim work.and2_1bit assuming your AND gate is named as such.

3. In the Objects window, select all of the items listed using the standard shift-click. Once they
are all selected, right-click and select Add To Wave -> Selected Signals.

ENEE 359a: Digital VLSI Circuits — Project 1

4

is should open up the Wave tab with all of the signals from the fullAdder module.

4. At the command line in the Transcript tab, type run 100 and hit enter. e waveform
should display a bunch of red and blue lines representing undefined or high-impedance
signals. is is because there are no values on the input. Let’s change this.

5. At the command line, type the following:

force a 0; force b 1; force cin 1; run 100

is time, the waveform should display green lines for each signal. Using the truth table
above, make sure your outputs s and cout are the correct values. Using the syntax above,
change the values of the inputs to observe the module’s behavior. Hopefully, for all
combinations of inputs, the correct output is produced.

4-bit Adder, Built from 1-bit Full Adders

1. Now, create a module for a 4-bit, 2-input adder using the full-adder module just created.
Use the internets to find a block diagram. Turn in all of your HDL source code and a
screenshot of the waveform after you have added together a couple of numbers (In decimal,
explained below).

ENEE 359a: Digital VLSI Circuits — Project 1

5

Tips:

• You can splice off individual wires from a multi-bit width signal by using the brackets, just
like in C. If you need the least-significant-bit of signal output, address it with output[0].

• Right-click on a signal in the waveform window to select the radix. When turning in the
screenshot of your results, and for your own use, use Decimal.

• When forcing signals via the command line you can specify the radix of the value you are
forcing. Here is an example :

force a ‘d4
force b ‘d11

e d stands for Decimal. h works for hex, b for binary, etc.

ENEE 359a: Digital VLSI Circuits — Project 1

6

