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Color

This section describes the toolbox functions that help you work with color image data. Note that 
“ color”  includes shades of gray; therefore much of the discussion in this chapter applies to grayscale 
images as well as color images. Topics covered include

Terminology (p. 13-2) Provides definitions of image processing terms used in 
this section

Working with Different Screen Bit 
Depths (p. 13-3)

Describes how to determine the screen bit depth of your 
system and provides recommendations if you can change 
the bit depth

Reducing the Number of Colors in an 
Image (p. 13-6)

Describes how to use imapprox and rgb2ind to reduce the 
number of colors in an image, including information 
about dithering

Converting to Other Color Spaces 
(p. 13-15)

Defines the concept of image color space and describes 
how to convert images between color spaces
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Terminology
An understanding of the following terms will help you to use this chapter.

Terms Definitions

Approximation The method by which the software chooses replacement colors in the 
event that direct matches cannot be found. The methods of 
approximation discussed in this chapter are colormap mapping, 
uniform quantization, and minimum variance quantization.

Indexed image An image whose pixel values are direct indices into an RGB 
colormap. In MATLAB, an indexed image is represented by an array 
of class uint8, uint16, or double. The colormap is always an m-by-3 
array of class double. We often use the variable name X to represent 
an indexed image in memory, and map to represent the colormap.

Intensity image An image consisting of intensity (grayscale) values. In MATLAB, 
intensity images are represented by an array of class uint8, uint16, 
or double. While intensity images are not stored with colormaps, 
MATLAB uses a system colormap to display them. We often use the 
variable name I to represent an intensity image in memory. This 
term is synonymous with the term grayscale.

RGB image An image in which each pixel is specified by three values —  one 
each for the red, blue, and green components of the pixel’s color. In 
MATLAB, an RGB image is represented by an m-by-n-by-3 array of 
class uint8, uint16, or double. We often use the variable name RGB 
to represent an RGB image in memory.

Screen bit depth The number of bits per screen pixel.

Screen color resolution The number of distinct colors that can be produced by the screen.
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Working with Different Screen Bit Depths
Most computer displays use 8, 16, or 24 bits per screen pixel. The number of 
bits per screen pixel determines the display’s screen bit depth. The screen bit 
depth determines the screen color resolution, which is how many distinct colors 
the display can produce. 

Regardless of the number of colors your system can display, MATLAB can store 
and process images with very high bit depths: 224 colors for uint8 RGB images, 
248 colors for uint16 RGB images, and 2159 for double RGB images. These 
images display best on systems with 24-bit color, but usually look fine on 16-bit 
systems as well. (For additional information about how MATLAB handles 
color, see the MATLAB graphics documentation.)

This section:

• Describes how to determine your system’s screen bit depth

• Provides guidelines for choosing a screen bit depth

Determining Your Systems Screen Bit Depth
To determine your system’s screen bit depth, enter this command at the 
MATLAB prompt.

get(0,'ScreenDepth')
ans =

    16
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The integer MATLAB returns represents the number of bits per screen pixel:

Choosing a Screen Bit Depth
Depending on your system, you may be able to choose the screen bit depth you 
want to use. (There may be trade-offs between screen bit depth and screen color 
resolution.) In general, 24-bit display mode produces the best results. If you 
need to use a lower screen bit depth, 16-bit is generally preferable to 8-bit. 
However, keep in mind that a 16-bit display has certain limitations, such as:

• An image may have finer gradations of color than a 16-bit display can 
represent. If a color is unavailable, MATLAB uses the closest approximation.

Value Screen Bit Depth

8 8-bit displays supports 256 colors. An 8-bit display can produce 
any of the colors available on a 24-bit display, but only 256 
distinct colors can appear at one time. (There are 256 shades of 
gray available, but if all 256 shades of gray are used, they take 
up all of the available color slots.)

16 16-bit displays usually use 5 bits for each color component, 
resulting in 32 (i.e., 25) levels each of red, green, and blue. This 
supports 32,768 (i.e., 215) distinct colors (of which 32 are shades 
of gray). Some systems use the extra bit to increase the number 
of levels of green that can be displayed. In this case, the number 
of different colors supported by a 16-bit display is actually 
64,536 (i.e. 216).

24 24-bit displays use 8 bits for each of the three color components, 
resulting in 256 (i.e., 28) levels each of red, green, and blue. This 
supports 16,777,216 (i.e., 224) different colors. (Of these colors, 
256 are shades of gray. Shades of gray occur where R=G=B.) The 
16 million possible colors supported by 24-bit display can render 
a life-like image.

32 32-bit displays use 24 bits to store color information and use the 
remaining 8 bits to store transparency data (alpha channel). For 
information about how MATLAB supports the alpha channel, 
see Transparency.
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• There are only 32 shades of gray available. If you are working primarily with 
grayscale images, you may get better display results using 8-bit display 
mode, which provides up to 256 shades of gray.

For information about reducing the number of colors used by an image, see 
“Reducing the Number of Colors in an Image”  on page 13-6. 
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Reducing the Number of Colors in an Image
This section describes how to reduce the number of colors in an indexed or RGB 
image. A discussion is also included about dithering, which is used by the 
toolbox’s color-reduction functions (see below.) Dithering is used to increase the 
apparent number of colors in an image.

The table below summarizes the Image Processing Toolbox functions for color 
reduction.

On systems with 24-bit color displays, RGB (truecolor) images can display up 
to 16,777,216 (i.e., 224) colors. On systems with lower screen bit depths, RGB 
images still displays reasonably well, because MATLAB automatically uses 
color approximation and dithering if needed. 

Indexed images, however, may cause problems if they have a large number of 
colors. In general, you should limit indexed images to 256 colors for the 
following reasons:

• On systems with 8-bit display, indexed images with more than 256 colors will 
need to be dithered or mapped and, therefore, may not display well.

• On some platforms, colormaps cannot exceed 256 entries.

• If an indexed image has more than 256 colors, MATLAB cannot store the 
image data in a uint8 array, but generally uses an array of class double 
instead, making the storage size of the image much larger (each pixel uses 
64 bits).

• Most image file formats limit indexed images to 256 colors. If you write an 
indexed image with more than 256 colors (using imwrite) to a format that 
does not support more than 256 colors, you will receive an error.

Function Purpose

imapprox Reduces the number of colors used by an indexed image, 
enabling you specify the number of colors in the new 
colormap.

rgb2ind Converts an RGB image to an indexed image, enabling 
you to specify the number of colors to store in the new 
colormap.
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Using rgb2ind
rgb2ind converts an RGB image to an indexed image, reducing the number of 
colors in the process. This function provides the following methods for 
approximating the colors in the original image:

• Quantization

- Uniform quantization

- Minimum variance quantization

• Colormap mapping

The quality of the resulting image depends on the approximation method you 
use, the range of colors in the input image, and whether or not you use 
dithering. Note that different methods work better for different images. See 
“Dithering”  on page 13-13 for a description of dithering and how to enable or 
disable it.

Quantization
Reducing the number of colors in an image involves quantization. The function 
rgb2ind uses quantization as part of its color reduction algorithm. rgb2ind 
supports two quantization methods: uniform quantization and minimum 
variance quantization. 

An important term in discussions of image quantization is RGB color cube, 
which is used frequently throughout this section. The RGB color cube is a 
three-dimensional array of all of the colors that are defined for a particular 
data type. Since RGB images in MATLAB can be of type uint8, uint16, or 
double, three possible color cube definitions exist. For example, if an RGB 
image is of class uint8, 256 values are defined for each color plane (red, blue, 
and green), and, in total, there will be 224 (or 16,777,216) colors defined by the 
color cube. This color cube is the same for all uint8 RGB images, regardless of 
which colors they actually use. 

The uint8, uint16, and double color cubes all have the same range of colors. 
In other words, the brightest red in an uint8 RGB image displays the same as 
the brightest red in a double RGB image. The difference is that the double 
RGB color cube has many more shades of red (and many more shades of all 
colors). Figure 13-1, below, shows an RGB color cube for a uint8 image.
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Figure 13-1:  RGB Color Cube for uint8 Images

Quantization involves dividing the RGB color cube into a number of smaller 
boxes, and then mapping all colors that fall within each box to the color value 
at the center of that box. 

Uniform quantization and minimum variance quantization differ in the 
approach used to divide up the RGB color cube. With uniform quantization, the 
color cube is cut up into equal-sized boxes (smaller cubes). With minimum 
variance quantization, the color cube is cut up into boxes (not necessarily 
cubes) of different sizes; the sizes of the boxes depend on how the colors are 
distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and specify 
a tolerance. The tolerance determines the size of the cube-shaped boxes into 
which the RGB color cube is divided. The allowable range for a tolerance 
setting is [0,1]. For example, if you specify a tolerance of 0.1, the edges of the 
boxes are one-tenth the length of the RGB color cube and the maximum total 
number of boxes is

n = (floor(1/tol)+1)^3
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The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread('flowers.tif');
[x,map] = rgb2ind(RGB, 0.1);

Figure 13-2 illustrates uniform quantization of a uint8 image. For clarity, the 
figure shows a two-dimensional slice (or color plane) from the color cube where 
Red=0, and Green and Blue range from 0 to 255. The actual pixel values are 
denoted by the centers of the x’s.

Figure 13-2:  Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out. 
Therefore, only one of the boxes in Figure 13-2 is used to produce a color for the 
colormap. As shown earlier, the maximum length of a colormap created by 
uniform quantization can be predicted, but the colormap can be smaller than 
the prediction because rgb2ind removes any colors that do not appear in the 
input image. 

Minimum Variance Quantization. To perform minimum variance quantization, call 
rgb2ind and specify the maximum number of colors in the output image’s 
colormap. The number you specify determines the number of boxes into which 
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the RGB color cube is divided. These commands use minimum variance 
quantization to create an indexed image with 185 colors.

RGB = imread('flowers.tif');
[X,map] = rgb2ind(RGB,185);

Minimum variance quantization works by associating pixels into groups based 
on the variance between their pixel values. For example, a set of blue pixel 
values may be grouped together because none of their values is greater than 5 
from the center pixel of the group. 

In minimum variance quantization, the boxes that divide the color cube vary 
in size, and do not necessarily fill the color cube. If some areas of the color cube 
do not have pixels, there are no boxes in these areas. 

While you set the number of boxes, n, to be used by rgb2ind, the placement is 
determined by the algorithm as it analyzes the color data in your image. Once 
the image is divided into n optimally located boxes, the pixels within each box 
are mapped to the pixel value at the center of the box, as in uniform 
quantization.

The resulting colormap usually has the number of entries you specify. This is 
because the color cube is divided so that each region contains at least one color 
that appears in the input image. If the input image uses fewer colors than the 
number you specify, the output colormap will have fewer than n colors, and the 
output image will contain all of the colors of the input image.

Figure 13-3 shows the same two-dimensional slice of the color cube as was used 
in Figure 13-2 (for demonstrating uniform quantization). Eleven boxes have 
been created using minimum variance quantization.
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Figure 13-3:  Minimum Variance Quantization on a Slice of the RGB Color 
Cube

For a given number of colors, minimum variance quantization produces better 
results than uniform quantization, because it takes into account the actual 
data. Minimum variance quantization allocates more of the colormap entries to 
colors that appear frequently in the input image. It allocates fewer entries to 
colors that appear infrequently. As a result, the accuracy of the colors is higher 
than with uniform quantization. For example, if the input image has many 
shades of green and few shades of red, there will be more greens than reds in 
the output colormap. Note that the computation for minimum variance 
quantization takes longer than that for uniform quantization.

Colormap Mapping
If you specify an actual colormap to use, rgb2ind uses colormap mapping 
(instead of quantization) to find the colors in the specified colormap that best 
match the colors in the RGB image. This method is useful if you need to create 
images that use a fixed colormap. For example, if you want to display multiple 
indexed images on an 8-bit display, you can avoid color problems by mapping 
them all to the same colormap. Colormap mapping produces a good 
approximation if the specified colormap has similar colors to those in the RGB 
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image. If the colormap does not have similar colors to those in the RGB image, 
this method produces poor results.

This example illustrates mapping two images to the same colormap. The 
colormap used for the two images is created on the fly using the MATLAB 
function colorcube, which creates an RGB colormap containing the number of 
colors that you specify. (colorcube always creates the same colormap for a 
given number of colors.) Because the colormap includes colors all throughout 
the RGB color cube, the output images can reasonably approximate the input 
images.

RGB1 = imread('autumn.tif');
RGB2 = imread('flowers.tif');
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

Note  The function subimage is also helpful for displaying multiple indexed 
images. For more information see “Displaying Multiple Images in the Same 
Figure”  on page 3-20 or the reference page for subimage.

Reducing Colors in an Indexed Image
Use imapprox when you need to reduce the number of colors in an indexed 
image. imapprox is based on rgb2ind and uses the same approximation 
methods. Essentially, imapprox first calls ind2rgb to convert the image to RGB 
format, and then calls rgb2ind to return a new indexed image with fewer 
colors.

For example, these commands create a version of the trees image with 64 
colors, rather than the original 128.

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

The quality of the resulting image depends on the approximation method you 
use, the range of colors in the input image, and whether or not you use 
dithering. Note that different methods work better for different images. See 
“Dithering”  on page 13-13 for a description of dithering and how to enable or 
disable it.
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Dithering
When you use rgb2ind or imapprox to reduce the number of colors in an image, 
the resulting image may look inferior to the original, because some of the colors 
are lost. rgb2ind and imapprox both perform dithering to increase the 
apparent number of colors in the output image. Dithering changes the colors of 
pixels in a neighborhood so that the average color in each neighborhood 
approximates the original RGB color. 

For an example of how dithering works, consider an image that contains a 
number of dark pink pixels for which there is no exact match in the colormap. 
To create the appearance of this shade of pink, the Image Processing Toolbox 
selects a combination of colors from the colormap, that, taken together as a 
six-pixel group, approximate the desired shade of pink. From a distance, the 
pixels appear to be correct shade, but if you look up close at the image, you can 
see a blend of other shades, perhaps red and pale pink pixels. The commands 
below load a 24-bit image, and then use rgb2ind to create two indexed images 
with just eight colors each. 

rgb=imread('lily.tif'); 
imshow(rgb);
[X_no_dither,map]=rgb2ind(rgb,8,'nodither');
[X_dither,map]=rgb2ind(rgb,8,'dither');
figure, imshow(X_no_dither,map);
figure, imshow(X_dither,map);

Figure 13-4:  Examples of Color Reduction with and Without Dithering

Original image Without dithering With dithering
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Notice that the dithered image has a larger number of apparent colors but is 
somewhat fuzzy-looking. The image produced without dithering has fewer 
apparent colors, but an improved spatial resolution when compared to the 
dithered image. One risk in doing color reduction without dithering is that the 
new image my contain false contours (see the rose in the upper-right corner).
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Converting to Other Color Spaces
The Image Processing Toolbox represents colors as RGB values, either directly 
(in an RGB image) or indirectly (in an indexed image, where the colormap is 
stored in RGB format). However, there are other models besides RGB for 
representing colors numerically. For example, a color can be represented by its 
hue, saturation, and value components (HSV) instead. The various models for 
color data are called color spaces.

The functions in the Image Processing Toolbox that work with color assume 
that images use the RGB color space. However, the toolbox provides support for 
other color spaces though a set of conversion functions. You can use these 
functions to convert between RGB and the following color spaces:

• National Television Systems Committee (NTSC)

• YCbCr

• Hue, saturation, value (HSV)

These section describes these color spaces and the conversion routines for 
working with them:

• “NTSC Color Space”

• “YCbCr Color Space”  on page 13-16

• “HSV Color Space”  on page 13-16

NTSC Color Space
The NTSC color space is used in televisions in the United States. One of the 
main advantages of this format is that grayscale information is separated from 
color data, so the same signal can be used for both color and black and white 
sets. In the NTSC format, image data consists of three components: luminance 
(Y), hue (I), and saturation (Q). The first component, luminance, represents 
grayscale information, while the last two components make up chrominance 
(color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color 
space. ntsc2rgb performs the reverse operation. 

For example, these commands convert the flowers image to NTSC format.

RGB = imread('flowers.tif');
YIQ = rgb2ntsc(RGB);
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Because luminance is one of the components of the NTSC format, the RGB to 
NTSC conversion is also useful for isolating the gray level information in an 
image. In fact, the toolbox functions rgb2gray and ind2gray use the rgb2ntsc 
function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YIQ = rgb2ntsc(RGB);
I = YIQ(:,:,1);

Note  In YIQ color space, I is one of the two color components, not the 
grayscale component.

YCbCr Color Space
The YCbCr color space is widely used for digital video. In this format, 
luminance information is stored as a single component (Y), and chrominance 
information is stored as two color-difference components (Cb and Cr). Cb 
represents the difference between the blue component and a reference value. 
Cr represents the difference between the red component and a reference value.

YCbCr data can be double precision, but the color space is particularly well 
suited to uint8 data. For uint8 images, the data range for Y is [16, 235], and 
the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and bottom 
of the full uint8 range so that additional (nonimage) information can be 
included in a video stream.

The function rgb2ycbcr converts colormaps or RGB images to the YCbCr color 
space. ycbcr2rgb performs the reverse operation. 

For example, these commands convert the flowers image to YCbCr format.

RGB = imread('flowers.tif');
YCBCR = rgb2ycbcr(RGB);

HSV Color Space
The HSV color space (hue, saturation, value) is often used by people who are 
selecting colors (e.g., of paints or inks) from a color wheel or palette, because it 
corresponds better to how people experience color than the RGB color space 
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does. The functions rgb2hsv and hsv2rgb convert images between the RGB and 
HSV color spaces. 

As hue varies from 0 to 1.0, the corresponding colors vary from red, through 
yellow, green, cyan, blue, and magenta, back to red, so that there are actually 
red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the 
corresponding colors (hues) vary from unsaturated (shades of gray) to fully 
saturated (no white component). As value, or brightness, varies from 0 to 1.0, 
the corresponding colors become increasingly brighter.

Figure 13-5 illustrates the HSV color space.

Figure 13-5:  Illustration of the HSV Color Space

The function rgb2hsv converts colormaps or RGB images to the HSV color 
space. hsv2rgb performs the reverse operation. These commands convert an 
RGB image to HSV color space.
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RGB = imread('flowers.tif');
HSV = rgb2hsv(RGB);

For closer inspection of the HSV color space, the next block of code displays the 
separate color planes (hue, saturation, and value) of an HSV image. 

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv(RGB);
H=HSV(:,:,1);
S=HSV(:,:,2);
V=HSV(:,:,3);
imshow(H)
figure, imshow(S);
figure, imshow(V);
figure, imshow(RGB);

Figure 13-6:  The Separated Color Planes of an HSV Image

Hue plane Saturation plane

Value plane Original image
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The images in Figure 13-6 can be scrutinized for a better understanding of how 
the HSV color space works. As you can see by looking at the hue plane image, 
hue values make a nice linear transition from high to low. If you compare the 
hue plane image against the original image, you can see that shades of deep 
blue have the highest values, and shades of deep red have the lowest values. 
(In actuality, there are values of red on both ends of the hue scale, which you 
can see if you look back at the model of the HSV color space in Figure 13-5. To 
avoid confusion, our sample image uses only the red values from the beginning 
of the hue range.) Saturation can be thought of as the purity of a color. As the 
saturation plane image shows, the colors with the highest saturation have the 
highest values and are represented as white. In the center of the saturation 
image, notice the various shades of gray. These correspond to a mixture of 
colors; the cyans, greens, and yellow shades are mixtures of true colors. Value 
is roughly equivalent to brightness, and you will notice that the brightest areas 
of the value plane correspond to the brightest colors in the original image.
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