

OPA602

High-Speed Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

WIDE BANDWIDTH: 6.5MHz
 HIGH SLEW RATE: 35V/µs
 LOW OFFSET: ±250µV max
 LOW BIAS CURRENT: ±1pA max

● FAST SETTLING TIME: 1µs to 0.01%

• UNITY-GAIN STABLE

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DATA CONVERSION

DESCRIPTION

The OPA602 is a precision, wide bandwidth FET operational amplifier. Monolithic **Difet** (dielectrically isolated FET) construction provides an unusual combination of high speed and accuracy.

Its wide-bandwidth design minimizes dynamic errors. High slew rate and fast settling time allow accurate signal processing in pulse and data conversion applications. Wide bandwidth and low distortion minimize AC errors. All specifications are rated with a $1k\Omega$ resistor in parallel with 500pF load. The OPA602 is unity-gain stable and easily drives capacitive loads up to 1500pF.

Laser-trimmed input circuitry provides offset voltage and drift performance normally associated with precision bipolar op amps. *Difet* construction achieves extremely low input bias currents (1pA max) without compromising input voltage noise.

The OPA602's unique input cascode circuitry maintains low input bias current and precise input characteristics over its full input common-mode voltage range.

-In (2) Output (6) -V_s (4)

Printed in U.S.A. August, 1995

Difet® Burr-Brown Corp.

International Airport Industrial Park

• Mailing Address: PO Box 11400

• Tucson, AZ 85734

• Street Address: 6730 S. Tucson Blvd.

• Tucson, AZ 85706

Tel: (520) 746-1111

• Twx: 910-952-1111

• Cable: BBRCORP

• Telex: 066-6491

• FAX: (520) 889-1510

• Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

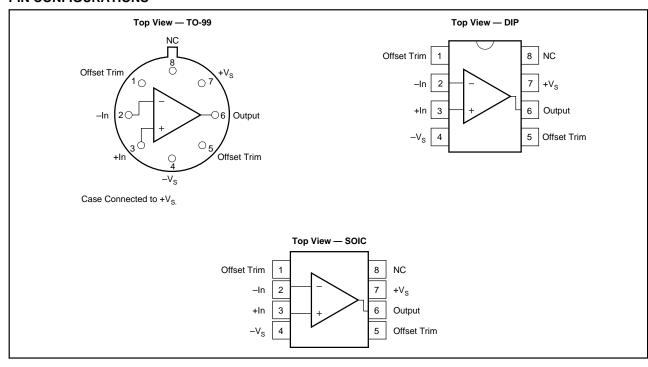
At V_{S} = $\pm 15 VDC$ and T_{A} = +25°C unless otherwise noted.

		OP	OPA602AM/AP/AU		OPA602BM/SM/BP		OPA602CM		1		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE Voltage: f _O = 10Hz f _O = 100Hz f _O = 1kHz			* *			23 19 13			* *		nV/√Hz nV/√Hz
$\begin{aligned} f_O &= 10 \text{kHz} \\ f_B &= 10 \text{Hz to } 10 \text{kHz} \\ f_B &= 0.1 \text{Hz to } 10 \text{Hz} \\ \text{Current: } f_B &= 0.1 \text{Hz to } 10 \text{Hz} \\ f_O &= 0.1 \text{Hz to } 20 \text{kHz} \end{aligned}$			* * * *			12 1.4 0.95 12 0.6			* * * * *		nV/√Hz μVrms μVp-p fAp-p fA/√Hz
OFFSET VOLTAGE Input Offset Voltage: M Package P Package U Package Over Specified Temperature	V _{CM} = 0VDC		±300 1 1	±1000 2 3		±150 0.5	±500 1		±100	±250	μV mV mV
M Package P, U Packages Average Drift Supply Rejection	$T_A = T_{MIN}$ to T_{MAX} ± $V_S = 12V$ to 18V	70	±550 ±1.5 *	±15	80	±250 ±0.75 ±3 100	±1000 ±1.5 ±5	86	±200 * *	±500 ±2	μV mV μV/°C dB
BIAS CURRENT Input Bias Current Over Specified Temperature SM Grade	V _{CM} = 0VDC		±2 ±20	±10 ±500		±1 ±20 ±200	±2 ±200 ±2000		±0.5 ±10	±1 ±100	pA pA pA
OFFSET CURRENT Input Offset Current Over Specified Temperature SM Grade	V _{CM} = 0VDC		1 20	10 500		0.5 20 200	2 200 1000		0.5 10	1 100	pA pA pA
INPUT IMPEDANCE Differential Common-Mode			*			10 ¹³ 1 10 ¹⁴ 3			*		Ω pF Ω pF
INPUT VOLTAGE RANGE Common-Mode Input Range		*	*		±10.2	+13, -11		*	*		٧
Common-Mode Rejection	$V_{IN} = \pm 10 VDC$	75	*		88	100		92	*		dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	$R_L \ge 1k\Omega$	75	*		88	100		92	*		dB
FREQUENCY RESPONSE Gain Bandwidth Full Power Response Slew Rate Settling Time: 0.1% 0.01%	$\begin{aligned} &\text{Gain} = 100 \\ &20\text{Vp-p, R}_L = 1\text{k}\Omega \\ &\text{V}_O = \pm 10\text{V, R}_L = 1\text{k}\Omega \\ &\text{Gain} = -1, \text{R}_L = 1\text{k}\Omega \\ &\text{C}_L = 500\text{pF, }10\text{V Step} \end{aligned}$	3.5	* * * *		4 24	6.5 570 35 0.6 1.0		5 28	* * * *		MHz kHz V/μs μs μs
RATED OUTPUT Voltage Output	$R_L = 1k\Omega$	±11	*		±11.5	+12.9, -13.8		*	*		٧
Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$V_O = \pm 10VDC$ 1MHz, Open Loop Gain = +1	±25	* * *		±15 ±30	±20 80 1500 ±50		*	* * *		mA Ω pF mA
POWER SUPPLY Rated Voltage Voltage Range,			*			±15			*		VDC
Derated Performance Current, Quiescent Over Specified Temperature	I _O = 0mADC	*	*	* *	±5	3 3.5	±18 4 4.5	*	*	* *	VDC mA mA
TEMPERATURE RANGE Specification SM Grade Operating: M Package	Ambient Temperature Ambient Temperature	*		*	-25 -55 -55		+85 +125 +125	*		*	°C °C
P, U Packages Storage: M Package P, U Packages	Ambient Temperature	-25 * -40		+85 * +125	-55 -25 -65 -40		+85 +150 +125	*		*	°C °C
heta JA			*			200			*		°C/W

^{*} Same specifications as OPA602BM.

ABSOLUTE MAXIMUM RATINGS

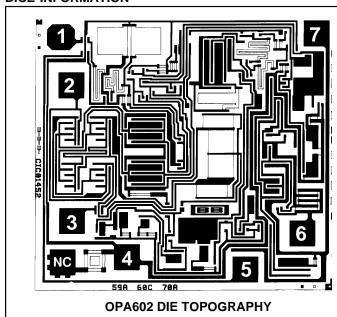
PACKAGE INFORMATION


MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA602AM	TO-99	001
OPA602BM	TO-99	001
OPA602CM	TO-99	001
OPA602SM	TO-99	001
OPA602AP	Plastic DIP	006
OPA602BP	Plastic DIP	006
OPA602AU	Plastic SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

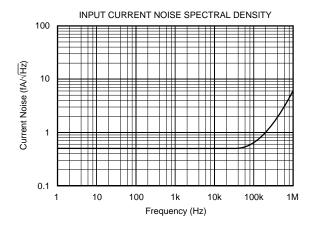
MODEL	PACKAGE	TEMPERATURE RANGE	OFFSET VOLTAGE MAX (μV) AT 25°C
OPA602AM	TO-99	−25 to +85°C	±1000
OPA602BM	TO-99	−25 to +85°C	±500
OPA602CM	TO-99	−25 to +85°C	±250
OPA602SM	TO-99	-55 to +125°C	±500
OPA602AP	Plastic DIP	−25 to +85°C	±2000
OPA602BP	Plastic DIP	−25 to +85°C	±1000
OPA602AU	Plastic SOIC	−25 to +85°C	±3000

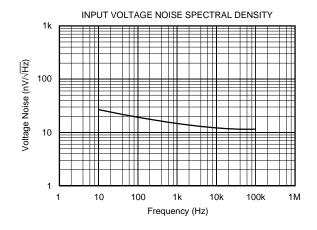

PIN CONFIGURATIONS

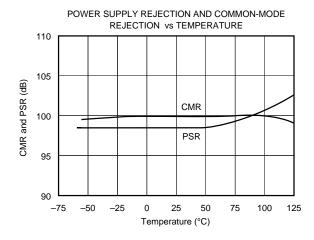
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

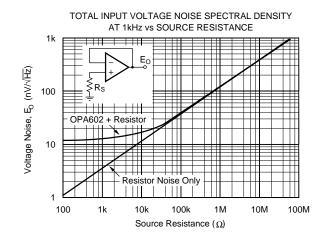
DICE INFORMATION

PAD	FUNCTION		
1	Offset Trim		
2	–In		
3	+ln		
4	-V _s		
5	Offset Trim		
6	Output		
7	+V _S		

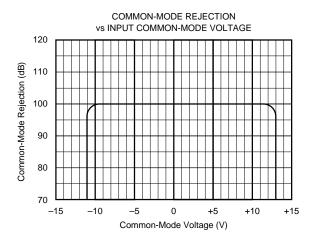

Substrate Bias: -V_S NC: No Connection.

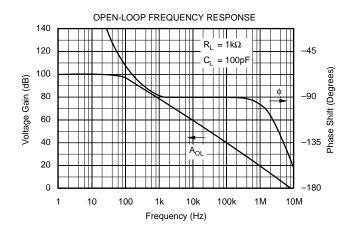

MECHANICAL INFORMATION

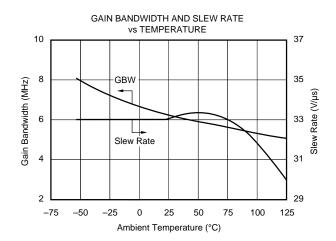

	MILS (0.001")	MILLIMETERS
Die Size Die Thickness Min. Pad Size	63 x 58 ±5 20 ±3 4 x 4	1.60 x 1.47 ±0.13 0.51 ±0.08 0.10 x 0.10
Backing Transistor Count		None 36

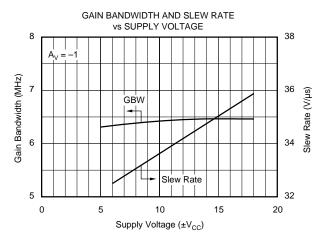

TYPICAL PERFORMANCE CURVES

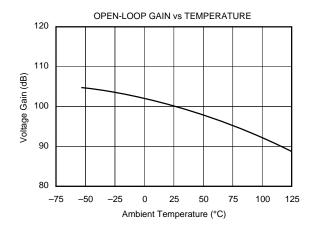
 T_{A} = +25°C, V_{S} = $\pm 15 VDC$ unless otherwise noted.

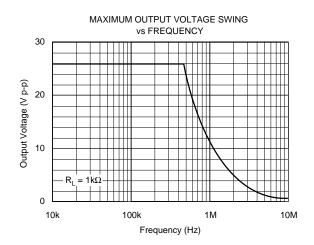


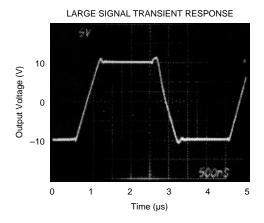


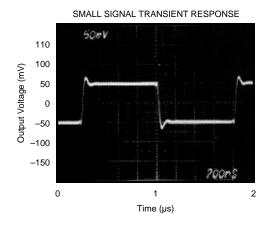


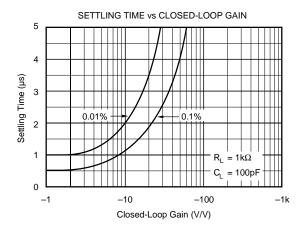

TYPICAL PERFORMANCE CURVES (CONT)

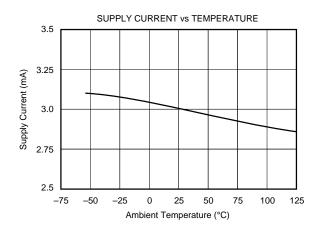

 T_A = +25°C, V_S = ±15VDC unless otherwise noted.

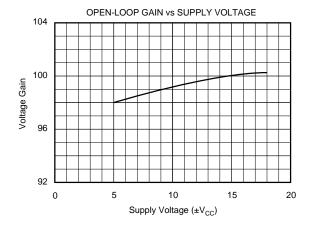


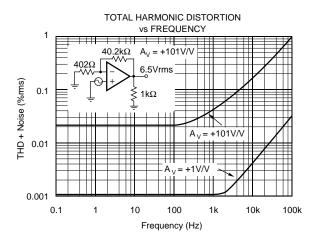


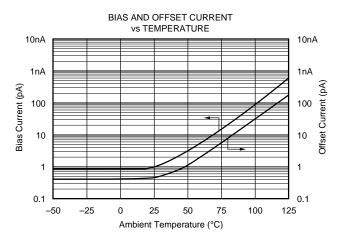


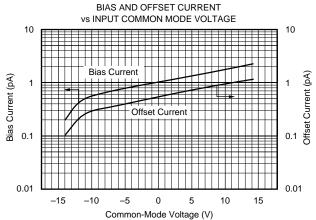


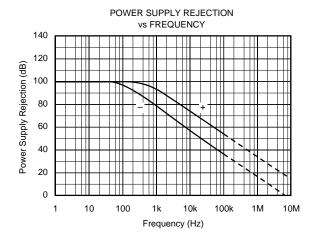

TYPICAL PERFORMANCE CURVES (CONT)

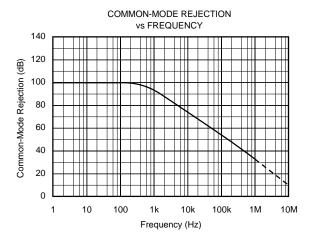

 T_A = +25°C, V_S = ±15VDC unless otherwise noted.










TYPICAL PERFORMANCE CURVES (CONT)

 $T_A = +25$ °C, $V_S = \pm 15$ VDC unless otherwise noted.

APPLICATIONS INFORMATION

Unity-gain stability with good phase margin and excellent output drive characteristics bring freedom from the subtle problems associated with other high speed amplifiers. But with any high speed, wide bandwidth circuitry, careful circuit layout will ensure best performance. Make short, direct interconnections and avoid stray wiring capacitance—especially at the inverting input pin.

Power supplies should be bypassed with good high frequency capacitors positioned close to the op amp pins. In most cases $0.1\mu F$ ceramic capacitors are adequate. Applications with heavier loads and fast transient waveforms may benefit from use of additional $1.0\mu F$ tantalum bypass capacitors.

INPUT BIAS CURRENT GUARDING

Leakage currents across printed circuit boards can easily exceed the input bias current of the OPA602. A circuit board "guard" pattern (Figure 1) is an effective solution to difficult leakage problems. This guard pattern must be repeated on all layers of a multilayer board. By surrounding critical high impedance input circuitry with a low impedance circuit connection at the same potential, leakage currents will flow harmlessly to the low impedance node.

Input bias current may also be degraded by improper handling or cleaning. Contamination from handling parts and circuit boards may be cleaned with appropriate solvents and deionized water. Each rinsing operation should be followed by a 30-minute bake at +85°C.

2 BURR-BROWN®

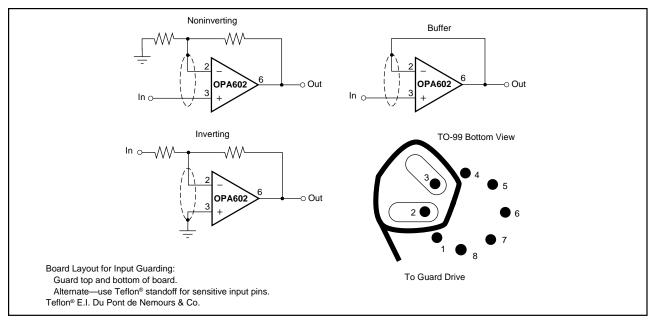


FIGURE 1. Connection of Input Guard.

APPLICATION CIRCUITS

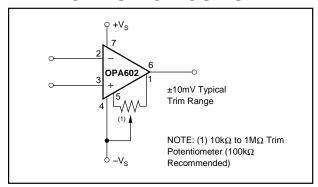


FIGURE 2. Offset Voltage Trim.

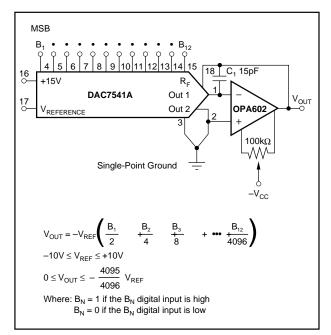


FIGURE 3. Voltage Output D/A Converter.

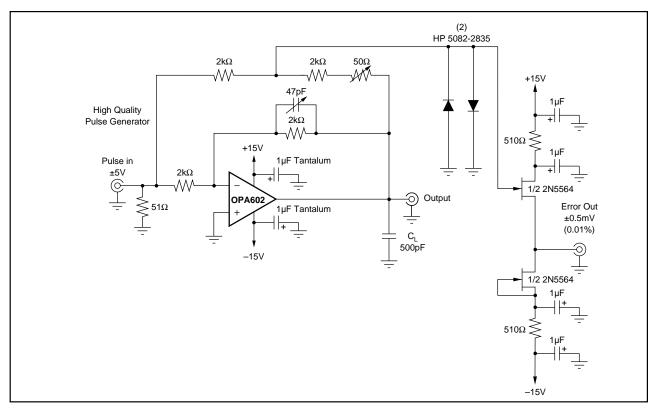


FIGURE 4. Settling Time and Slew Rate Test Circuit.

9

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated