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COMMUNICATIONS SYSTEMS

DATA COMPRESSION:

Finite sources

LetX denote a finite set, hereafter called the alphabet, and we refer to an element
x of X as a symbol. A probability mass function (pmf)p = (p(x), x ∈ X ) onX
is any collection of scalars indexed byX such that

0 < p(x) ≤ 1, x ∈ X with
∑

x∈X

p(x) = 1.

A source is simply a pair(X , p) whereX is a finite alphabet andp is a pmf on
X . It is sometimes convenient to refer to such a source by the notationX = (X , p)
where theX -valued random variableX : Ω → X is defined on some probability
space(Ω,F , P) such that

p(x) = P [X = x] , x ∈ X .

In short, we can think ofp(x) as the likelihood that the source generates symbol
x.

Divergence
The divergence between the pmfsp andq onX is defined by

D(p‖q) := −
∑

x∈X

p(x) log2

(

q(x)

p(x)

)

.

The basic bound
D(p‖q) ≥ 0

holds with equality if and only ifp = q.

Entropy
For pmfp onX , its (binary) entropy is defined by

H2(p) := −
∑

x∈X

p(x) log2 p(x).
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The basic bounds
0 ≤ H2(p) ≤ log2 |X |

holds, and we have

1. The lower bound is achieved if and only if the pmfp is degenerate, i.e.,

H2(p) = 0 if and only if p(x) = 1 for some x ∈ X ;

2. The upper bound is achieved if and only if the pmfp is the uniform pmf on
X , i.e.,

H2(p) = log2 |X | if and only if p(x) =
1

|X |
, x ∈ X .

Compression codes

Let B⋆ denote the collection of all binary words, i.e.,

B⋆ = ∪∞
n=1{0, 1}

n.

A binary compression code, hereafter simply a code, for aX -valued source is any
mapping

C : X → B⋆.

For eachx in X , C(x) is known as the codeword associated withx underC. It
is customary to refer to the collection{C(x), x ∈ X} of all codewords as the
codebook forC, and to identify it withC.

Some terminology: A codeC : X → B⋆ is said to be

1. non-singular ifC(x) 6= C(y) for any pair of distinct symbolsx, y in X ;

2. uniquely decipherable if the equality

C(x1) . . . C(xn) = C(y1) . . . C(ym)

for somex1, . . . , xn, y1, . . . , ym in X implies

n = m and xj = yj, j = 1, . . . , n.



c©2007 by Armand M. Makowski 3

3. prefix (or to have the prefix property) if for any symbolx in X , no prefix of
C(x) is a codeword for some other symbol inX .

Prefix codes are also known as instantaneous codes. We denotethe collection
of all prefix codes byCPref .

Length of codes

Given a codeC : X → B⋆, let ℓC(x) denote the length of the binary code-
word C(x) associated with the symbolx in X . Given a sourceX = (X , p), the
expected codeword length of a codeC : X → B⋆ is given by

L(C; p) := E [ℓC(X)]

=
∑

x∈X

ℓC(x)p(x).(1)

Kraft Inequality
For any prefix codeC : X → B⋆, we have

∑

x∈X

2−ℓC(x) ≤ 1.

Conversely, for any collection(ℓ(x), x ∈ X ) of positive integers such that
∑

x∈X

2−ℓ(x) ≤ 1,

there exists a prefix codeC : X → B⋆ such that

ℓC(x) = ℓ(x), x ∈ X .

Shannon encoding
Set

ℓSH(x) = ⌈log2

1

p(x)
⌉, x ∈ X .

Since2log2 t = t for all t > 0, we find
∑

x∈X

2−ℓSH(x) ≤
∑

x∈X

2− log2
1

p(x)

=
∑

x∈X

2log2 p(x)

=
∑

x∈X

p(x) = 1,(2)
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and there exists a prefix codeCSH : X → B⋆ such that

ℓCSH
(x) = ℓSH(x), x ∈ X .(3)

Any code satsifying (3) is known as Shannon encoding.
Note that

L(CSH; p) =
∑

x∈X

p(x)ℓSH(x)

≤
∑

x∈X

p(x)

(

log2

1

p(x)
+ 1

)

= −
∑

x∈X

p(x) log2 p(x) +
∑

x∈X

p(x)

= H2(p) + 1.(4)

Shannon encoding comes from within one bit of source entropy!

Average code length and entropy
Consider a prefix codeC : X → B⋆. Introduce the pmfqC onX given by

qC(x) =
2−ℓC(x)

Σ(C)
, x ∈ X

where
Σ(C) =

∑

x∈X

2−ℓC(x).

We have

L(C; p) − H2(p) = D(p‖qC) + log2

(

1

Σ(C)

)

(5)

so that
L(C; p) ≥ H2(p)

sinceD(p‖qC) ≥ 0 andΣ(C) ≤ 1 by Kraft inequality. Equality holds if and only
if D(p‖qC) = 0 andΣ(C) = 1. In other words, equality holds if and only if there
exists positive integers(n(x), x ∈ X ) such that

p(x) = 2−n(x), x ∈ X .

A proof of (5)
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L(C; p) =
∑

x∈X

ℓC(x)p(x)

= −
∑

x∈X

p(x) log2

(

2−ℓC(x)
)

= −
∑

x∈X

p(x) log2

(

2−ℓC(x)

Σ(C)
· Σ(C)

)

= −
∑

x∈X

p(x) log2

(

qC(x)

p(x)
· p(x)Σ(C)

)

= −
∑

x∈X

p(x)

(

log2

(

qC(x)

p(x)

)

+ log2 p(x) + log2 Σ(C)

)

= −
∑

x∈X

p(x) log2

(

qC(x)

p(x)

)

−
∑

x∈X

p(x) log2 p(x) − log2 Σ(C).

Source coding Theorem (Shannon 1948)
The bounds

H2(p) ≤ Lmin(p) ≤ H2(p) + 1(6)

hold where
Lmin(p) := min (L(C; p) : C ∈ CPref) .

Moreover,
Lmin(p) = H2(p)

if and only if there exists positive integers(n(x), x ∈ X )

p(x) = 2−n(x), x ∈ X .

The more likely the symbol, the shorter its description
Consider a prefix codeC : X → B⋆. Define a new codeC ′ : X → B⋆ as follows:
Pick distinctx andy in X , and set

C ′(z) =























C(z) if z 6= x, y

C(y) if z = x

C(x) if z = y
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Obviously,

ℓC′(z) =























ℓC(z) if z 6= x, y

ℓC(y) if z = x

ℓC(x) if z = y

so that

L(C; p) − L(C ′; p) =
∑

z∈X

ℓC(z)p(z) −
∑

z∈X

ℓC′(z)p(z)

= (ℓC(x)p(x) + ℓC(y)p(y))− (ℓC(y)p(x) + ℓC(x)p(y))

= (ℓC(x) − ℓC(y)) p(x) + (ℓC(y) − ℓC(x)) p(y)

= (ℓC(x) − ℓC(y)) (p(x) − p(y)) .

In short, if p(y) < p(x), thenL(C; p) ≤ L(C ′; p) if and only if ℓC(x) ≤
ℓC(y).

Reduction step behind Huffman encoding
Consider a codeC : X → B⋆ with the following property: There exist distinct
symbolsx andy in X such that their codewords differ only in their last bit, i.e.,
for someℓ = 1, 2, . . ., we have

C(x) = (b1, . . . , bℓ, 1) and C(y) = (b1, . . . , bℓ, 0)

with b1, . . . , bℓ in {0, 1}.
With the sourceX = (X , p), we associate a new sourceX ′ = (X ′, p′) as

follows: The new alphabetX ′ is obtained by combining the two symbolsx andy,
i.e.,

X ′ := (X − {x, y}) ∪ {⋆}

where⋆ denotes the new symbol obtained by combiningx andy. Next, the pmf
p
′ onX ′ is naturally derived fromp, namely

p′(z) =







p(z) if z 6= x, y

p(x) + p(y) if z = ⋆.

With C we now associate a new codeC ′ : X ′ → B⋆ for this new sourceX ′ =
(X ′, p′) given by

C ′(z) =







C(z) if z 6= x, y

(b1, . . . , bℓ) if z = ⋆.
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Therefore,

ℓC′(z) =







ℓC(z) if z 6= x, y

ℓ if z = ⋆.

With these definitions,

L(C ′, p′) =
∑

z∈X ′

ℓC′(z)p′(z)

=
∑

z∈X−{x,y}

ℓC′(z)p′(z) + ℓC′(⋆)p′(⋆)

=
∑

z∈X−{x,y}

ℓC(z)p(z) + ℓ (p(x) + p(y))

=
∑

z∈X−{x,y}

ℓC(z)p(z) + ℓp(x) + ℓp(y)

=
∑

z∈X−{x,y}

ℓC(z)p(z) + (ℓC(x) − 1) p(x) + (ℓC(y) − 1) p(y)

=
∑

z∈X

ℓC(z)p(z) − (p(x) + p(y)) .

In short,
L(C ′, p′) = L(C, p) − (p(x) + p(y)) .(7)

Properties of optimal prefix codes
For notational convenience, assume that the symbols in the alphabetX are rela-
beled so that

p(M) ≤ p(M − 1) ≤ . . . ≤ p(2) ≤ p(1)

with |X | = M .

1. If a (prefix) codeC : X → B⋆ is optimal, then necessarily

ℓC(1) ≤ ℓC(2) ≤ . . . ≤ ℓC(M − 1) ≤ ℓC(M)

2. If the prefix codeC : X → B⋆ is optimal, then necessarily

ℓC(M − 1) = ℓC(M)
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3. The optimal prefix codeC : X → B⋆ can always be selected so thatC(M−
1) andC(M) differ only in the last bit, i.e., ifC(M −1) = (a1, . . . , aℓ) and
C(M) = (b1, . . . , bℓ) whereℓ = ℓC(M − 1) = ℓC(M), then

ak = bk, k = 1, . . . , ℓ − 1.


