ENEE 420
FALL 2007
COMMUNICATIONS SYSTEMS
HOMEWORK \# 2
Due October 3, 2007

Please work out the ten (10) attached problems. Show work and explain reasoning. Three (3) problems, selected at random amongst these ten problems, will be graded.

1.

Design a Huffman code for the source $X=(\mathcal{X}, \boldsymbol{p})$ where $\mathcal{X}=\{1, \ldots, n\}$ for some positive integer n and

$$
p(x)=2^{-x}, \quad x=1, \ldots, n-1, p(n)=2^{-(n-1)}
$$

Is the entropy bound achieved in this case?
2. \qquad

Consider the code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ for a seven symbol source given by

$$
01,100,101,1110,1111,0011,0001
$$

Show that this code cannot be a Huffman code for any source $X=(\mathcal{X}, \boldsymbol{p})$.
3. \qquad

Exercise 9.9 (Haykin, p. 620)
4. \qquad

Exercise 9.10 (Haykin, p. 620)
5. \qquad
Exercise 9.11 (Haykin, p. 620)
6.

Exercise 9.12 (Haykin, p. 620)
7.

Exercise 9.14 (Haykin, p. 621)
8.

Consider the four symbol source $X=(\mathcal{X}, \boldsymbol{p})$ with $\mathcal{X}=\{A, B, C, D\}$ and $\operatorname{pmf} \boldsymbol{p}=$ $(p(A), p(B), p(C), p(D))$. Find a pmf \boldsymbol{p} for which there exist two optimal codes which assign different codeword lengths to the four symbols.
9. \qquad
Find sources $X=(\mathcal{X}, \boldsymbol{p})$ for which the difference between its entropy and the expected codeword length of the Huffman code is as large as possible.
10.

Exercise 9.16 (Haykin, p. 621)

