ENEE 420 FALL 2007 COMMUNICATIONS SYSTEMS

TEST # 2:

Please work out the **four** (4) attached problems. **Show** work on provided space and **explain** reasoning; **box** or **circle** your final answers.

Please write your $\mathbf{full}\ \mathbf{name}\ \mathrm{and}\ \mathbf{SSN}\ \mathrm{in}\ \mathrm{the}\ \mathrm{space}\ \mathrm{provided}\ \mathrm{below!}\ \mathrm{Thank}\ \mathrm{you}\ \mathrm{for}\ \mathrm{your}\ \mathrm{cooperation}.$

Total						 	 	•••••	/120
Problem #4	••••	••••	••••	• • • • •	••••	 • • • • • • •	 		/30
Problem #3	• • • •			••••	••••	 	 		/30
Problem #2	• • • •	• • • • •	••••	• • • • •	•••••	 	 		/20
Problem #1	• • • •	• • • • •	••••	• • • • •	• • • • •	 	 • • • • • • • •		/40

NAME/SSN: _____

#1. A communications engineer is asked to generate a modulated signal $s : \mathbb{R} \to \mathbb{R}$ of the form

$$s(t) = Am(t)\cos\left(2\pi f_c t\right), \quad t \in \mathbb{R}$$

for some amplitude A > 0 and carrier frequency $f_c > 0$, where the information-bearing signal $m : \mathbb{R} \to \mathbb{R}$ is band-limited with cut-off frequency $W < f_c$. For that purpose the product modulator depicted below is made available to the engineer.

1.c. Repeat Part **1.b** with $c(t) = \cos(2\pi f_c t)^2$ instead (15 pts.).

^{1.}a. Upon doing some testing, this engineer quickly realizes that the carrier generator used in this product modulator does **not** generate $c(t) = \cos(2\pi f_c t)$ (as advertised in the specs)) but $c(t) = \cos(2\pi f_c t)^3$ instead. Under these conditions, find the Fourier transform of the output $y : \mathbb{R} \to \mathbb{R}$ of the product modulator¹ (15 pts.);

^{1.}b. Use Part **1.a** to determine whether our engineer will be able to complete the task assigned to her with the available equipment (possibly augmented by an appropriate linear filter). In the affirmative give a complete design for doing so. Carefully explain your answer! (**10 pts.**);

¹**HINT:** Recall the usual trigonometric identities, namely $\cos(2\theta) = \ldots$ so that $\cos(\theta)^3 = \cos(\theta) \cdot \cos(\theta)^2 = \ldots$ for all θ in \mathbb{R} .

#2. The information-bearing signal $m : \mathbb{R} \to \mathbb{R}$ to be transmitted is given by

 $m(t) = 10\cos(1000\pi t) + 5\cos(1500\pi t), \quad t \in \mathbb{R}.$

This signal will be quantized using Delta-modulation.

2.a. Determine an appropriate sampling interval T_s . Explain your answer (5 pts.);

2.b. Find conditions on Δ and T_s so as to avoid slope overload in this specific example (15 pts.);

#3. We consider a vestigial-sideband modulation scheme whose shaping filter has frequency response function $H_{\text{VSB}}(f)$ is depicted below. Let $h_{\text{VSB}} : \mathbb{R} \to \mathbb{R}$ denote the corresponding impulse response function.

3.a. Does this shaping filter $H_{\text{VSB}}(f)$ allow for full recovery of any low-pass informationbearing signal with cut-off frequency $W < f_c$? Explain! (5 pts.);

3.b. What is the transmission bandwidth B_T needed for using this modulation scheme? (5 pts.);

Assume now that the information-bearing signal $m : \mathbb{R} \to \mathbb{R}$ is the single-tone signal

$$m(t) = A_m \cos\left(2\pi f_m t\right), \quad t \in \mathbb{R}$$

with $A_m > 0$ and $f_m = cW$ for some 0 < c < 1.

3.c. Give an expression for the resulting modulated waveform $s_{\text{VSB}} : \mathbb{R} \to \mathbb{R}$ when $\frac{1}{2} < c < 1$ (10 pts.);

3.d. Give an expression for the resulting modulated waveform $s_{\text{VSB}} : \mathbb{R} \to \mathbb{R}$ when $0 < c < \frac{1}{2}$ (10 pts.).

#4. Consider the signal $s : \mathbb{R} \to \mathbb{R}$ given by

$$s(t) = A\sin\left(2\pi(f_c + f_a)t\right) + B\cos\left(2\pi f_c t\right) - A\sin\left(2\pi(f_c - f_a)t\right), \quad t \in \mathbb{R}$$

under the conditions A > 0, B > 0 and $0 < f_a < f_c$.

4.a. Can you interpret s as the modulated signal that results from one of the modulation schemes² when the unmodulated carrier is $\cos(2\pi f_c t)$? In the affirmative, identify the modulation technique (5 pts.) and give an explicit expression for the corresponding information-bearing signal $m : \mathbb{R} \to \mathbb{R}$ (5 pts.);

4.b. Find the in-phase component s_I and in-quadrature component s_Q of the modulated signal s (10 pts.);

4.c. Give an expression for the envelope a of s (5 pts.). Under what condition will it be possible to extract the original signal m (from s) by means of an envelope detector? (5 pts.);

 $^{^{2}}$ You need only consider the schemes studied in ENEE 420.