ENEE 420 FALL 2010 COMMUNICATIONS SYSTEMS

ANGLE MODULATION

Throughout, we consider the information-bearing signal $m:\mathbb{R}\to\mathbb{R}$. Its Fourier transform is given by

$$M(f) := \int_{\mathbb{R}} m(t)e^{-j2\pi ft}dt, \quad f \in \mathbb{R}.$$

Frequency modulation _____

The FM waveform $s_{\rm FM}:\mathbb{R}\to\mathbb{R}$ associated with the information-bearing signal m is given by

$$s_{\text{FM}}(t) = A_c \cos(\theta_{\text{FM}}(t)), \quad t \in \mathbb{R}$$

with

$$\theta_{\text{FM}}(t) = 2\pi f_c t + 2\pi k_F \int_0^t m(r) dr, \quad t \in \mathbb{R}.$$

Phase modulation _____

The PM waveform $s_{\text{PM}}:\mathbb{R}\to\mathbb{R}$ associated with the information-bearing signal m is given by

$$s_{\text{PM}}(t) = A_c \cos \left(\theta_{\text{PM}}(t)\right), \quad t \in \mathbb{R}$$

with

$$\theta_{\rm PM}(t) = 2\pi f_c t + k_P m(t), \quad t \in \mathbb{R}.$$

Single-tone modulating signals _____

In an attempt to understand how the spectrum of angle-modulated signals is shaped by that of the modulating signal, we consider the simple case of a single-tone modulating signal $m : \mathbb{R} \to \mathbb{R}$, say

$$m(t) = A_m \cos(2\pi f_m t), \quad t \in \mathbb{R}$$

with amplitude $A_m > 0$ and frequency $f_m > 0$. In that case, we note that

$$\theta_{FM}(t) = 2\pi f_c t + 2\pi k_F \int_0^t A_m \cos(2\pi f_m r) dr$$

$$= 2\pi f_c t + 2\pi \frac{k_F A_m}{2\pi f_m} \sin(2\pi f_m t)$$

$$= 2\pi f_c t + \frac{k_F A_m}{f_m} \sin(2\pi f_m t)$$

$$= 2\pi f_c t + \beta \sin(2\pi f_m t), \quad t \in \mathbb{R}$$

$$(1)$$

where

$$\beta := \frac{\Delta f}{f_m}$$
 and $\Delta f := k_F A_m$.

Next,

(2)
$$\cos(\theta_{\text{FM}}(t)) = \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$$
$$= \Re(e^{j2\pi f_c t} e^{j\beta \sin(2\pi f_m t)}), \quad t \in \mathbb{R}.$$

The function $t \to e^{j\beta\sin(2\pi f_m t)}$ being continuous and periodic with period $T_m = \frac{1}{f_m}$, it admits the Fourier series representation

$$e^{j\beta\sin(2\pi f_m t)} = \sum_k c_k e^{j2\pi k f_m t}, \quad t \in \mathbb{R}$$

with

$$c_k = \frac{1}{T_m} \int_{-\frac{T_m}{2}}^{\frac{T_m}{2}} e^{j\beta \sin(2\pi f_m t)} e^{-j2\pi k f_m t} dt, \quad k = 0, \pm 1, \pm 2, \dots$$

Now fix $k=0,\pm 1,\pm 2,\ldots$ Upon making the change of variable $x=2\pi f_m t$, we get

$$c_k = \frac{1}{T_m} \int_{-\frac{T_m}{2}}^{\frac{T_m}{2}} e^{j\beta \sin(2\pi f_m t)} e^{-j2\pi k f_m t} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin(x) - kx)} dx$$

$$= J_k(\beta)$$
(3)

where

$$J_k(\beta) := \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin(x) - kx)} dx, \quad \beta \in \mathbb{R}$$

defines the k^{th} order Bessel function of the first kind.

Substituting we find

$$e^{j\beta\sin(2\pi f_m t)} = \sum_k J_k(\beta)e^{j2\pi k f_m t}, \quad t \in \mathbb{R}.$$

Therefore,

$$A_{c} \cos (\theta_{FM}(t)) = A_{c} \Re \left(e^{j2\pi f_{c}t} e^{j\beta \sin(2\pi f_{m}t)} \right)$$

$$= A_{c} \Re \left(e^{j2\pi f_{c}t} \sum_{k} J_{k}(\beta) e^{j2\pi k f_{m}t} \right)$$

$$= A_{c} \sum_{k} J_{k}(\beta) \Re \left(e^{j2\pi f_{c}t} e^{j2\pi k f_{m}t} \right)$$

$$= A_{c} \sum_{k} J_{k}(\beta) \cos \left(2\pi \left(f_{c} + k f_{m} \right) t \right), \quad t \in \mathbb{R}.$$

$$(4)$$

In the frequency domain this last relationship becomes

(5)
$$S_{FM}(f) = \frac{A_c}{2} \sum_{k} J_k(\beta) \left(\delta(f - (f_c + kf_m)) + \delta(f + (f_c + kf_m)) \right)$$

for all f in \mathbb{R} . Thus, although the single-tone signal m has frequency content *only* at the frequencies $f = \pm f_m$, the corresponding FM wave has *infinite* bandwidth since it displays frequency content at the countably infinite set of frequencies

$$f = \pm (f_c + k f_m), \quad k = 0, \pm 1, \dots$$

Narrow-band vs wide-band FM _

Using elementary trigonometric formulae, we observe

$$s_{\text{FM}}(t) = A_c \cos(\theta_{\text{FM}}(t))$$

$$= A_c \cos\left(2\pi f_c t + 2\pi k_F \int_0^t m(r) dr\right)$$

$$= A_c \cos\left(2\pi f_c t\right) \cos\left(2\pi k_F \int_0^t m(r) dr\right)$$

$$- A_c \sin\left(2\pi f_c t\right) \sin\left(2\pi k_F \int_0^t m(r) dr\right), \quad t \in \mathbb{R}$$
(6)

Narrow-band FM is characterized by

(7)
$$2\pi k_F \left| \int_0^t m(r)dr \right| \ll 1, \quad t \in \mathbb{R}$$

in which case

$$\sin\left(2\pi k_F \int_0^t m(r)dr\right) \simeq 2\pi k_F \int_0^t m(r)dr$$

and

$$\cos\left(2\pi k_F \int_0^t m(r)dr\right) \simeq 1$$

for all t in \mathbb{R} . Therefore, we have the approximation

(8)
$$s_{\text{FM}}(t) \simeq s_{\text{NB-FM}}(t), \quad t \in \mathbb{R}$$

where the narrow-band FM signal $s_{\text{NB-FM}}: \mathbb{R} \to \mathbb{R}$ is defined by

$$s_{\text{NB-FM}}(t) = A_c \cos(2\pi f_c t) - A_c \sin(2\pi f_c t) \left(2\pi k_F \int_0^t m(r) dr\right), \quad t \in \mathbb{R}.$$

In other words, when condition (7) holds, the FM waveform $s_{\rm FM}$ is well approximated by $s_{\rm NB-FM}$ and therefore can be replaced by it. The advantage of doing so is that the signal $s_{\rm NB-FM}$ is AM-like in its structure and can be generated easily according to techniques developed for amplitude modulation. *Wide-band FM* arises when the condition (7) fails to hold.

Carson's formula.

The realization that the spectrum of $s_{\rm FM}$ has infinite extent leads to the following practical concern: How much bandwidth is needed to transmit $s_{\rm FM}$ without too much distortion?

One answer to this question was given by Carson, and is summarized in the formula that carries his name: Carson's formula states that the transmission bandwidth B_T of the FM wave associated with the single-tone signal m should be set to

$$B_{T,\text{Carson}} := 2f_m + 2\Delta f$$

$$= 2f_m (1 + \beta)$$

since $\Delta f = f_m \beta$ by definition.

One way to generalize Carson's bandwidth formula could proceed by *formally* giving the quantities f_m and β interpretations which do not rely on the specific form of the information-bearing signal m. We do this as follows:

In the single-tone case, the frequency f_m can be interpreted as the cutoff frequency of the signal – In other words, f_m is the bandwidth of the signal. On the other hand, Δf can be viewed as describing the largest possible excursion of the instantaneous frequency from f_c : Indeed, the instantaneous frequency of the FM wave at time t is given by

$$\frac{1}{2\pi} \frac{d}{dt} \theta_{FM}(t) = f_c + k_F A_m \cos(2\pi f_m t)$$

and the corresponding deviation in instantaneous frequency at time t is simply

$$\frac{1}{2\pi} \frac{d}{dt} \theta_{\rm FM}(t) - f_c = k_F A_m \cos(2\pi f_m t).$$

Therefore, the maximal deviation from f_c is given by

$$\sup (|k_F A_m \cos (2\pi f_m t)|, \quad t \in \mathbb{R}) = k_F A_m = \Delta f.$$

Now consider an information bearing signal which is bandlimited with cutoff frequency W>0. With the discussion for the single-tone modulating signal in mind, it is natural to replace in Carson's formula f_m by W and Δf by D with

$$D := \sup (k_F |m(t)|, t \in \mathbb{R}).$$

This suggests the approximation

$$B_T \simeq B_{T, Carson}$$

with

$$B_{T,\text{Carson}} := 2W + 2D$$

$$= 2W (1 + \beta)$$

where β is defined as

$$\beta := \frac{D}{W} = \frac{\sup (k_F |m(t)|, \ t \in \mathbb{R})}{W}.$$

At this point, you may feel that the generalized Carson's formula discussed above is simply a formal expression without much practical grounding. We now show through an approximation argument (see below) that the bandwidth as given by $B_{T,\text{Carson}}$ is indeed meaningful from an engineering point of view.

The basic idea is to characterize the spectrum of the FM wave associated with a *sampled* version of the information-bearing signal. Thus, fix T>0. We approximate the information-bearing signal $m:\mathbb{R}\to\mathbb{R}$ by the staircase approximation $m_T^\star:\mathbb{R}\to\mathbb{R}$ given by

$$m_T^{\star}(t) = m(kT), \quad kT \le t < (k+1)T$$

with $k=0,\pm 1,\ldots$ We then replace $\theta_{\mathrm{FM}}:\mathbb{R}\to\mathbb{R}$ as defined above by $\theta_{\mathrm{FM},T}^\star:\mathbb{R}\to\mathbb{R}$ given by

$$\theta_{\mathrm{FM},T}^{\star}(t) = 2\pi f_c t + 2\pi k_F \int_0^t m_T^{\star}(r) dr, \quad t \in \mathbb{R}$$

and write

$$s_{\text{FM},T}^{\star}(t) = A_c \cos\left(\theta_{\text{FM},T}^{\star}(t)\right), \quad t \in \mathbb{R}.$$

Fix f in \mathbb{R} . Note that

$$S_{\text{FM},T}^{\star}(f) = \int_{\mathbb{R}} A_c \cos\left(\theta_{\text{FM},T}^{\star}(t)\right) e^{-j2\pi f t} dt$$

$$= A_c \sum_{k} \int_{kT}^{(k+1)T} \cos\left(\theta_{\text{FM},T}^{\star}(t)\right) e^{-j2\pi f t} dt.$$
(12)

Now, for k = 0, 1, ..., with $kT \le t < (k+1)T$, we have

$$\theta_{\text{FM},T}^{\star}(t) = 2\pi f_c t + 2\pi k_F \int_0^t m_T^{\star}(r) dr$$

$$= 2\pi f_c t + 2\pi k_F \left(T \sum_{\ell=0}^{k-1} m(\ell T) + m(kT)(t - kT) \right)$$

$$= 2\pi (f_c + k_F m(kT))(t - kT) + 2\pi T \left(k f_c + k_F \sum_{\ell=0}^{k-1} m(\ell T) \right)$$
(13)
$$= 2\pi (f_c + k_F m(kT))(t - kT) + 2\pi \gamma_k T$$

where we have set

$$\gamma_k := k f_c + k_F \left(\sum_{\ell=0}^{k-1} m(\ell T) \right).$$

Direct substitution yields

$$\int_{kT}^{(k+1)T} \cos\left(\theta_{\text{FM},T}^{\star}(t)\right) e^{-j2\pi f t} dt$$

$$= \int_{kT}^{(k+1)T} \cos\left(2\pi (f_c + k_F m(kT))(t - kT) + 2\pi \gamma_k T\right) e^{-j2\pi f t} dt$$
(14)
$$= e^{-j2\pi k f T} \cdot \int_{0}^{T} \cos\left(2\pi (f_c + k_F m(kT))\tau + 2\pi \gamma_k T\right) e^{-j2\pi f \tau} d\tau.$$

To evaluate this last integral, we note that

$$\int_{0}^{T} e^{\pm j2\pi((f_{c}+k_{F}m(kT))\tau+\gamma_{k}T)} e^{-j2\pi f\tau} d\tau
= e^{\pm j2\pi\gamma_{k}T} \int_{0}^{T} e^{j2\pi(\pm(f_{c}+k_{F}m(kT))-f)\tau} d\tau
= e^{\pm j2\pi\gamma_{k}T} \cdot \frac{e^{j2\pi(\pm(f_{c}+k_{F}m(kT))-f)T} - 1}{j2\pi(\pm(f_{c}+k_{F}m(kT))-f)}
= a_{k}^{\pm}(f) \frac{\sin(\pi(\pm(f_{c}+k_{F}m(kT))-f)T)}{\pi(\pm(f_{c}+k_{F}m(kT))-f)}
= a_{k}^{\pm}(f) \frac{\sin(\pi(f\mp(f_{c}+k_{F}m(kT)))T)}{\pi(f\mp(f_{c}+k_{F}m(kT)))}$$
(15)

with

$$a_k^{\pm}(f) = e^{j2\pi\delta_k^{\pm}(f)T}$$

where

$$\delta_k^{\pm}(f) = \pm \gamma_k + \frac{1}{2} (\pm (f_c + k_F m(kT)) - f).$$

Recall that the sinc function $\operatorname{sinc}: \mathbb{R} \to \mathbb{R}$ is given by

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}, \quad x \in \mathbb{R}.$$

Therefore, for each k = 0, 1, ..., we have

$$\int_{kT}^{(k+1)T} \cos\left(\theta_{\text{FM},T}^{\star}(t)\right) e^{-j2\pi f t} dt$$

$$= \frac{1}{2} a_k^+(f) \frac{\sin \left(\pi \left(f - \left(f_c + k_F m(kT)\right)\right)T\right)}{\pi \left(f - \left(f_c + k_F m(kT)\right)\right)} + \frac{1}{2} a_k^-(f) \frac{\sin \left(\pi \left(f + \left(f_c + k_F m(kT)\right)\right)T\right)}{\pi \left(f + \left(f_c + k_F m(kT)\right)\right)} = \frac{1}{2} a_k^+(f) \cdot \operatorname{sinc}\left(\left(f - \left(f_c + k_F m(kT)\right)\right)T\right) + \frac{1}{2} a_k^-(f) \cdot \operatorname{sinc}\left(\left(f + \left(f_c + k_F m(kT)\right)\right)T\right),$$
(16)

and we can conclude

$$\int_{0}^{\infty} \cos\left(\theta_{\text{FM},T}^{\star}(t)\right) e^{-j2\pi f t} dt$$

$$= \frac{1}{2} \sum_{k=0}^{\infty} a_{k}^{+}(f) \cdot \operatorname{sinc}\left(\left(f - \left(f_{c} + k_{F}m(kT)\right)\right)T\right)$$

$$+ \frac{1}{2} \sum_{k=0}^{\infty} a_{k}^{-}(f) \cdot \operatorname{sinc}\left(\left(f + \left(f_{c} + k_{F}m(kT)\right)\right)T\right).$$
(17)

The zeroes of the sinc function occur at $x=\pm \ell$, $\ell=1,2,\ldots$, and its main lobe occupies the interval [-1,1]. As a result, for each $k=0,1,\ldots$, the main contribution of the term

$$\frac{1}{2}a_k^{\pm}(f) \cdot \operatorname{sinc}\left(\left(f \mp \left(f_c + k_F m(kT)\right)\right)T\right)$$

is taking place on an an interval centered at

$$\pm (f_c + k_F m(kT))$$

and of length 2/T, namely

$$\left[\pm (f_c + k_F m(kT)) - \frac{1}{T}, \pm (f_c + k_F m(kT)) + \frac{1}{T}\right].$$

Similar arguments could be made for the case k = -1, -2, ... and would lead to a similar expression for

$$\int_{-\infty}^{0} \cos\left(\theta_{\text{FM},T}^{\star}(t)\right) e^{-j2\pi f t} dt, \quad f \in \mathbb{R}.$$

The discussion suggests that most of the spectral content is contained in the interval

$$\left[\pm(f_c - D) - \frac{1}{T}, \pm(f_c + D) + \frac{1}{T}\right]$$

since

$$|k_F m(kT)| \leq D, \quad k = 0, \pm 1, \dots$$

by the definition of D. This leads to estimating the transmission bandwidth of $s_{\text{FM},T}^{\star}$ as being

$$B_T \simeq 2D + \frac{2}{T}.$$

If we sample at the Nyquist rate, that is $T = \frac{1}{2W}$, then the information contained in m is recoverable from m_T^{\star} , and the transmission bandwidths of their corresponding FM waveforms should be commensurate. In short,

$$B^{\star} = 2D + 4W$$

is expected to provide a reasonably good approximation to B_T . Note that

$$B^{\star} = 2D + 2W + 2W = B_{T, Carson} + 2W$$

so that this argument provides an approximation to the transmissison bandwith of the FM wave $s_{\rm FM}$ which is more conservative than the one provide by Carson's formula. This can be traced to the fact that the approximation is based on a sampling argument.

Immunity of angle modulation to non-linearities

Consider a non-linear device $\varphi : \mathbb{R} \to \mathbb{R}$ of the form

$$\varphi(x) = \sum_{m=1}^{M} a_m x^m, \quad x \in \mathbb{R}$$

for some integer $M \geq 2$ and assume $a_M \neq 0$.

For each t in \mathbb{R} , we note that

$$\varphi(s_{\text{FM}}(t)) = \sum_{m=1}^{M} a_m \left(A_c \cos(\theta_{\text{FM}}(t)) \right)^m$$

(18)
$$= \sum_{m=1}^{M} a_m A_c^m \left(\cos(\theta_{\text{FM}}(t)) \right)^m$$

$$= \sum_{m=1}^{M} a_m A_c^m \left(\sum_{k=0}^{m} a_{m,k} \cos(k\theta_{\text{FM}}(t)) \right)$$

as we invoke Lemma 0.1 in the last step. Interchanging the order of summation we conclude that

$$\varphi(s_{\text{FM}}(t)) = \sum_{m=1}^{M} a_m A_c^m a_{m,0}$$

$$+ \sum_{k=1}^{M} \left(\sum_{m=k}^{M} a_m A_c^m a_{m,k} \right) \cos(k\theta_{\text{FM}}(t))$$

$$= \sum_{\ell=0}^{M} B_{M,\ell} \cos(\ell\theta_{\text{FM}}(t))$$
(19)

with

(20)
$$B_{M,\ell} = \begin{cases} \sum_{m=1}^{M} a_m A_c^m a_{m,0} & \text{if } \ell = 0\\ \sum_{m=\ell}^{M} a_m A_c^m a_{m,\ell} & \text{if } \ell = 1, \dots, M. \end{cases}$$

For each $\ell=1,\ldots,M$, the signal $t\to\cos(\ell\theta_{\rm FM}(t))$ is the FM waveform at carrier frequency ℓf_c generated by the signal $t\to\ell m(t)$. According to the generalized Carson's rule, for all practical intent, we can view this signal as a bandpass signal whose (transmission) bandwidth B_ℓ is given by

$$B_{\ell} = 2(W + D_{\ell})$$
 with $D_{\ell} = \ell D$

since

(21)
$$D_{\ell} = \sup (k_F |\ell m(t)|, t \in \mathbb{R})$$
$$= \ell \sup (k_F |m(t)|, t \in \mathbb{R}) = \ell D.$$

Under the appropriate conditions each of the components $t \to \cos(\ell\theta_{\rm FM}(t))$ can be extracted from $\varphi(s_{\rm FM})$ by means of bandpass filtering. For instance, to recover $s_{\rm FM}$ from $\varphi(s_{\rm FM})$ we pass the latter through a bandpass filter centered at f_c with bandwidth B_1 such that

$$f_c + \frac{B_1}{2} < 2f_c - \frac{B_2}{2}.$$

This is equivalent to

$$f_c + (W+D) < 2f_c - (W+2D),$$

and requires that the condition

$$2W + 3D < f_c$$

holds.

Similar arguments can be given for extracting $t \to \cos(\theta_{\rm FM}(t))$ by means of bandpass filtering.

Generating FM signals _

Indirect method of Armstrong We seek to generate the FM signal $s_{\text{FM}} : \mathbb{R} \to \mathbb{R}$ associated with the information-bearing signal m, say

$$s_{\rm FM}(t) = A_c \cos(\theta_{\rm FM}(t)), \quad t \in \mathbb{R}$$

with

$$\theta_{\rm FM}(t) = 2\pi f_c t + 2\pi k_F \int_0^t m(r) dr, \quad t \in \mathbb{R}$$

for some given $k_F > 0$. We are in the situation when the condition (7) fails to hold for the choice of k_F so that $s_{\rm NB-FM}$ is not a good approximation to the desired FM signal $s_{\rm FM}$.

We begin by writing $k_F = M k_F^*$ for some positive integer M, so that the condition (7) now holds for k_F^* , namely

$$2\pi k_F^{\star} \left| \int_0^t m(r)dr \right| \ll 1, \quad t \in \mathbb{R}.$$

Under this condition the FM signal $s_{\mathrm{FM}}^\star:\mathbb{R}\to\mathbb{R}$ given by

$$s_{\text{FM}}^{\star} = A_c \cos\left(2\pi f_c t + 2\pi k_F^{\star} \int_0^t m(s) ds\right), \quad t \in \mathbb{R}$$

can be well approximated by the narrow-band FM signal $s_{\rm NB-FM}^{\star}:\mathbb{R}\to\mathbb{R}$ defined by

$$s_{\text{NB-FM}}^{\star}(t) = A_c \cos(2\pi f_c t) - A_c \sin(2\pi f_c t) \left(2\pi k_F^{\star} \int_0^t m(r) dr\right), \quad t \in \mathbb{R}.$$

Next, the narrow-band FM signal $s_{\mathrm{NB-FM}}^{\star}: \mathbb{R} \to \mathbb{R}$ is converted to the desired wide-band FM signal as follows: Consider a non-linear device $\varphi: \mathbb{R} \to \mathbb{R}$ of the form

$$\varphi(x) = \sum_{m=1}^{M} a_m x^m, \quad x \in \mathbb{R}$$

with $a_M \neq 0$.

For each t in \mathbb{R} , with

$$\theta_{\rm FM}^{\star}(t) = 2\pi f_c t + 2\pi k_F^{\star} \int_0^t m(r) dr,$$

we note from (19)-(20) that

(23)
$$\varphi(s_{\text{FM}}^{\star}(t)) = \sum_{\ell=0}^{N} B_{N,\ell} \cos(\ell \theta_{\text{FM}}^{\star}(t))$$

with the coefficients as given by (20).

By the same arguments as given earlier in the discussion of immunity of angle modulation to non-linearities, we can extract the signal $t \to \cos(M\theta_{\rm FM}^\star(t))$ by feeding the signal $t \to \varphi(s_{\rm FM}^\star(t))$ through a bandpass filter with center frequency Nf_c and bandwidth B_M^\star given by

$$B_M^{\star} = 2(W + D_M^{\star})$$

where for each $\ell = 1, 2, ...$, we have

$$D_{\ell}^{\star} = \sup \left(k_{F}^{\star} |\ell m(t)|, t \in \mathbb{R}\right)$$

$$= \ell \sup \left(k_{F}^{\star} |m(t)|, t \in \mathbb{R}\right)$$

$$= \frac{\ell}{M} \sup \left(k_{F} |m(t)|, t \in \mathbb{R}\right).$$

$$= \frac{\ell}{M} \cdot D.$$

$$(24)$$

As a result,

$$B_M^{\star} = 2(W + D_M^{\star}) = 2(W + D)$$

as should be expected!

Direct method Using a voltage-controlled oscillator (VCO)

Demodulation of FM signals

The FM waveform is given by

$$s_{\rm FM}(t) = A_c \cos(\theta_{\rm FM}(t)), \quad t \in \mathbb{R}$$

with

$$\theta_{\mathrm{FM}}(t) = 2\pi f_c t + 2\pi k_F \int_0^t m(r) dr, \quad t \in \mathbb{R}.$$

Assuming sufficient differentiability for m, we note that

$$\frac{d}{dt}s_{\text{FM}}(t) = -A_c \left(\frac{d}{dt}\theta_{\text{FM}}(t)\right) \cdot \sin\left(\theta_{\text{FM}}(t)\right)
= -A_c \left(2\pi f_c + 2\pi k_F m(t)\right) \cdot \sin\left(\theta_{\text{FM}}(t)\right)
= -2\pi A_c \left(f_c + k_F m(t)\right) \cdot \sin\left(\theta_{\text{FM}}(t)\right), \quad t \in \mathbb{R}.$$

This calculation highlights the fact that differentiating an FM waveform produces a signal that combines both amplitude and angle modulation. It raises the possibility of using an envelope detector to extract the information bearing signal m. This will be possible if

$$f_c + k_F m(t) > 0, \quad t \in \mathbb{R}.$$

This occurs when

$$D < f_c$$

The analysis just given is predicated on the amplitude of the FM waveform remaining constant over time. In practice, this condition is not expected to hold. In fact in a number of situations, amplitude distortion can be significant and it is appropriate to model the received signal $s_{\rm FM,Rec}:\mathbb{R}\to\mathbb{R}$ to be of the form

(26)
$$s_{\text{FM,Rec}}(t) = A(t)\cos(\theta_{\text{FM}}(t)), \quad t \in \mathbb{R}$$

for some $A: \mathbb{R} \to \mathbb{R}$ with

$$(27) A(t) > 0, \quad t \in \mathbb{R}.$$

Under (26)-(27) the earlier procedure of differentiating the incoming signal and passing the result through an envelope detector will not work anymore: Indeed, assuming enough differentiability, we now have

$$\frac{d}{dt}s_{\text{FM,Rec}}(t)$$

$$= -A(t) \left(\frac{d}{dt} \theta_{\rm FM}(t) \right) \cdot \sin \left(\theta_{\rm FM}(t) \right) + \left(\frac{d}{dt} A(t) \right) \cdot \cos \left(\theta_{\rm FM}(t) \right)$$

$$(28) = -2\pi A(t) \left(f_c + k_F m(t) \right) \cdot \sin \left(\theta_{\rm FM}(t) \right) + \left(\frac{d}{dt} A(t) \right) \cdot \cos \left(\theta_{\rm FM}(t) \right).$$

The approach based on envelope detection used when the amplitude remained constant will not work here due to the presence of the *unknown* and *time-varying* term

$$\left(\frac{d}{dt}A(t)\right)\cdot\cos\left(\theta_{\mathrm{FM}}(t)\right),\quad t\in\mathbb{R}.$$

We can remedy to this difficulty by preprocessing $s_{\rm FM,Rec}$ with the aim of extracting the original waveform $s_{\rm FM}$. One possible way to achieve this goal is presented next.

Consider the hard-limiter $\Phi: \mathbb{R} \to \mathbb{R}$ given by

(29)
$$\Phi(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

For each t in \mathbb{R} , as we recall that A(t) > 0, we note that

$$v(t) := \Phi(s_{\text{FM-Rec}}(t))$$

$$= \Phi(A(t)\cos(\theta_{\text{FM}}(t)))$$

$$= \Phi(\cos(\theta_{\text{FM}}(t))).$$

Next, observe that the mapping $\theta \to \Phi(\cos \theta)$ is a periodic function with period 2π – In fact, this function is just the periodic square wave function and therefore admits a Fourier series respresentation, say

(31)
$$\Phi(\cos \theta) = \sum_{k} c_k e^{jk\theta}, \quad \theta \in \mathbb{R}$$

with

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi(\cos \theta) e^{-jk\theta} d\theta, \quad k = 0, \pm 1, \dots$$

After some straightforward calculations (see below) we conclude that

$$\Phi(\cos \theta) = \frac{4}{\pi} \left(\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{2\ell+1} \cos((2\ell+1)\theta) \right), \quad \theta \in \mathbb{R}.$$

As a result,

(32)
$$v(t) = \Phi(\cos(\theta_{\text{FM}}(t)))$$
$$= \frac{4}{\pi} \left(\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{2\ell+1} \cos((2\ell+1)\theta_{\text{FM}}(t)) \right).$$

Again, as was the case in the discussion of demodulation of FM signals, we note that for each $\ell=0,1,\ldots$, the signal $t\to\cos\left((2\ell+1)\theta_{\rm FM}(t)\right)$ is the FM waveform at carrier frequency $(2\ell+1)f_c$ generated by the signal $t\to(2\ell+1)m(t)$. According to the generalized Carson's rule, we can view this signal as a bandpass signal with bandwidth $B_{2\ell+1}$ If we pass the signal v through a banpass filter with center frequency f_c and bandwidth 2W+2D we will collect the signal $t\to\frac4\pi\cos\left(\theta_{\rm FM}(t)\right)$, as required. The earlier procedure outlined earlier, namely feeding into a differentiator followed by an envelope detector, can now be used on this resulting waveform.

Properties of Bessel functions

0. For each $k=0,\pm 1,\ldots$ and every β in \mathbb{R} , $J_k(\beta)$ is an element of \mathbb{R} .

Proof. Fix $k = 0, \pm 1, \ldots$ and β in \mathbb{R} . Note that

$$J_{k}(\beta)^{*} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx\right)^{*}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(-\beta \sin x + kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - kx)} dx$$

Hence $J_k(\beta)^* = J_k(\beta)$, and $J_k(\beta)$ is an element of \mathbb{R} .

1. For each k = 0, 1, ..., we have

$$J_{-k}(\beta) = (-1)^k J_k(\beta), \quad \beta \in \mathbb{R}.$$

Proof. Fix $k=0,1,\ldots$ and β in \mathbb{R} . Using the change of variable $y=\pi-x$ we find

$$J_{-k}(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x + kx)} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin(\pi - y) + k(\pi - y))} dy$$

$$= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin y - y)} dy\right) \cdot e^{jk\pi}$$

$$= (-1)^k J_k(\beta)$$
(34)

since $e^{jk\pi} = (-1)^k$.

2. For each k = 0, 1, ..., we have

$$J_k(-\beta) = (-1)^k J_k(\beta), \quad \beta \ge 0.$$

Proof. Fix $k = 0, 1, \ldots$ and $\beta \ge 0$. We note that

$$J_{k}(-\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(-\beta \sin y - ky)} dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin(-y) + k(-y))} dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x + kx)} dx$$

$$= J_{-k}(\beta)$$
(35)

and the conclusion follows by Fact 1.

3. We have

$$J_0(\beta) = 1 + O(\beta) \quad (\beta \to 0).$$

Proof. Fix β in \mathbb{R} . From the definitions we see that

(36)
$$J_0(\beta) - 1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{j\beta \sin x} - 1 \right) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\int_{0}^{\beta \sin x} j e^{jt} dt \right) dx$$

so that

$$|J_{0}(\beta) - 1| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{0}^{\beta \sin x} j e^{jt} dt \right| dx$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{0}^{|\beta \sin x|} |j e^{jt}| dt \right| dx$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |\beta| |\sin x| dx$$

$$\leq |\beta|$$
(37)

and the conclusion follows.

4. We have

$$J_1(\beta) = \frac{\beta}{2}(1 + o(1)) \quad (\beta \to 0).$$

5. For each $\ell = 0, 1, \ldots$ we have

$$J_{\ell}(\beta) = \frac{\beta^{\ell}}{2^{\ell}\ell!} (1 + o(1)) \quad (\beta \to 0).$$

6. For each β in \mathbb{R} , we have

$$\sum_{\ell} |J_{\ell}(\beta)|^2 = 1.$$

Proof. For each β in \mathbb{R} , the function $x \to e^{j \sin x}$ is periodic with period 2π and therefore admits a Fourier series representation. It is a simple matter to see that

$$e^{j\sin x} = \sum_{\ell} J_k(\beta) e^{j\ell x}$$

and by Parseval's Theorem we get

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |e^{j\beta \sin x}|^2 dx = \sum_{\ell} |J_{\ell}(\beta)|^2.$$

The conclusion follows from the fact that

$$|e^{j\beta\sin x}|^2 = 1, \quad x \in \mathbb{R}.$$

On powers of $\cos \theta$

Given is θ in \mathbb{R} . We are interested in understanding how to compute

$$(\cos \theta)^m$$
, $m = 1, 2, \dots$

We shall repeatedly use the trigonometric identity

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

for arbitrary α and β in \mathbb{R} .

For m=2, we have

$$(38) \qquad (\cos \theta)^2 = \frac{\cos(2\theta) + 1}{2}.$$

Next, with m = 3,

$$(\cos \theta)^{3} = \frac{\cos(2\theta) + 1}{2} \cdot \cos \theta$$

$$= \frac{\cos(2\theta) \cos \theta + \cos \theta}{2}$$

$$= \frac{\frac{\cos(3\theta) + \cos \theta}{2} + \cos \theta}{2}$$

$$= \frac{\cos(3\theta) + 3\cos \theta}{4}$$
(39)

Building on the pattern emerging from these calculations we now set out to prove the following fact.

Lemma 0.1 Given θ in \mathbb{R} , for each m = 1, 2, ..., there exist scalars $a_{m,0}, ..., a_{m,m}$, independent of θ , such that

(40)
$$(\cos \theta)^m = \sum_{k=0}^m a_{m,k} \cos(k\theta).$$

Proof. The proof proceeds by induction. The conclusion (40) is true for m=1 (with $a_{1,0}=0$ and $a_{1,1}=1$), for m=2 (with $a_{2,0}=\frac{1}{2},\,a_{2,1}=0$ and $a_{2,2}=\frac{1}{2}$) and for m=3 (with $a_{3,0}=0,\,a_{3,1}=\frac{3}{2},\,a_{3,2}=0$ and $a_{3,3}=\frac{1}{4}$).

Now assume (40) to hold for some $m \ge 2$. We note that

$$(\cos \theta)^{m+1} = (\cos \theta)^m \cdot \cos \theta$$

$$= \left(\sum_{k=0}^m a_{m,k} \cos(k\theta)\right) \cdot \cos \theta$$

$$= a_{m,0} \cos \theta + \sum_{k=1}^m a_{m,k} \cos(k\theta) \cos \theta$$

$$= a_{m,0} \cos \theta + \sum_{k=1}^m a_{m,k} \frac{\cos((k+1)\theta) + \cos((k-1)\theta)}{2}$$

$$= a_{m,0} \cos \theta + \frac{1}{2} \sum_{k=1}^m a_{m,k} \cos((k+1)\theta) + \frac{1}{2} \sum_{k=1}^m a_{m,k} \cos((k-1)\theta)$$

$$= a_{m,0} \cos \theta + \frac{1}{2} \sum_{k=2}^{m+1} a_{m,k-1} \cos(k\theta) + \frac{1}{2} \sum_{k=0}^{m-1} a_{m,k+1} \cos(k\theta)$$

$$(41) = \sum_{k=0}^{m+1} a_{m+1,k} \cos(k\theta)$$

with

$$a_{m+1,k} = \begin{cases} \frac{a_{m,1}}{2} & \text{if } k = 0\\ a_{m,0} + \frac{a_{m,2}}{2} & \text{if } k = 1\\ \frac{1}{2} \left(a_{m,k-1} + a_{m,k+1} \right) & \text{if } k = 2, \dots, m-1\\ \frac{a_{m,m-1}}{2} & \text{if } k = m\\ \frac{a_{m,m}}{2} & \text{if } k = m+1 \end{cases}$$

by direct inspection. This completes the proof of Lemma 0.1.

Computing the Fourier coefficients for $\Phi(\cos\theta)$ _____

Recall that

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi(\cos \theta) e^{-jk\theta} d\theta, \quad k = 0, \pm 1, \dots$$

with Φ as defined at (29). Thus,

$$\int_{-\pi}^{\pi} \Phi(\cos\theta) e^{-jk\theta} d\theta,$$

$$= -\int_{-\pi}^{-\frac{\pi}{2}} e^{-jk\theta} d\theta + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-jk\theta} d\theta - \int_{\frac{\pi}{2}}^{\pi} e^{-jk\theta} d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-jk\theta} d\theta - \int_{\frac{\pi}{2}}^{\pi} \left(e^{jk\theta} + e^{-jk\theta} \right) d\theta$$

$$= \frac{e^{-jk\frac{\pi}{2}} - e^{jk\frac{\pi}{2}}}{-jk} - 2 \int_{\frac{\pi}{2}}^{\pi} \cos(k\theta) d\theta$$

$$= \frac{2}{k} \sin(k\frac{\pi}{2}) - \frac{2}{k} \left(\sin(k\pi) - \sin\left(k\frac{\pi}{2}\right) \right)$$

$$= \frac{4}{k} \sin\left(k\frac{\pi}{2}\right) - \frac{2}{k} \sin(k\pi)$$

$$= \frac{4}{k} \sin\left(k\frac{\pi}{2}\right).$$
(42)

It is plain that

$$\sin\left(k\frac{\pi}{2}\right) = \begin{cases} (-1)^{\ell} & \text{if } k = 2\ell + 1\\ 0 & \text{if } k = 2\ell \end{cases}$$

with $\ell = 0, \pm 1, \ldots$