ENEE 420
FALL 2010
COMMUNICATIONS SYSTEMS
ANGLE MODULATION

Throughout, we consider the information-bearing signal $m: \mathbb{R} \rightarrow \mathbb{R}$. Its Fourier transform is given by

$$
M(f):=\int_{\mathbb{R}} m(t) e^{-j 2 \pi f t} d t, \quad f \in \mathbb{R}
$$

Frequency modulation

The FM waveform $s_{\mathrm{FM}}: \mathbb{R} \rightarrow \mathbb{R}$ associated with the information-bearing signal m is given by

$$
s_{\mathrm{FM}}(t)=A_{c} \cos \left(\theta_{\mathrm{FM}}(t)\right), \quad t \in \mathbb{R}
$$

with

$$
\theta_{\mathrm{FM}}(t)=2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} m(r) d r, \quad t \in \mathbb{R}
$$

Phase modulation

The PM waveform $s_{\mathrm{PM}}: \mathbb{R} \rightarrow \mathbb{R}$ associated with the information-bearing signal m is given by

$$
s_{\mathrm{PM}}(t)=A_{c} \cos \left(\theta_{\mathrm{PM}}(t)\right), \quad t \in \mathbb{R}
$$

with

$$
\theta_{\mathrm{PM}}(t)=2 \pi f_{c} t+k_{P} m(t), \quad t \in \mathbb{R} .
$$

Single-tone modulating signals

In an attempt to understand how the spectrum of angle-modulated signals is shaped by that of the modulating signal, we consider the simple case of a singletone modulating signal $m: \mathbb{R} \rightarrow \mathbb{R}$, say

$$
m(t)=A_{m} \cos \left(2 \pi f_{m} t\right), \quad t \in \mathbb{R}
$$

with amplitude $A_{m}>0$ and frequency $f_{m}>0$. In that case, we note that

$$
\begin{align*}
\theta_{\mathrm{FM}}(t) & =2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} A_{m} \cos \left(2 \pi f_{m} r\right) d r \\
& =2 \pi f_{c} t+2 \pi \frac{k_{F} A_{m}}{2 \pi f_{m}} \sin \left(2 \pi f_{m} t\right) \\
& =2 \pi f_{c} t+\frac{k_{F} A_{m}}{f_{m}} \sin \left(2 \pi f_{m} t\right) \\
& =2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right), \quad t \in \mathbb{R} \tag{1}
\end{align*}
$$

where

$$
\beta:=\frac{\Delta f}{f_{m}} \quad \text { and } \quad \Delta f:=k_{F} A_{m} .
$$

Next,

$$
\begin{align*}
\cos \left(\theta_{\mathrm{FM}}(t)\right) & =\cos \left(2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right) \\
& =\Re\left(e^{j 2 \pi f_{c} t} e^{j \beta \sin \left(2 \pi f_{m} t\right)}\right), \quad t \in \mathbb{R} \tag{2}
\end{align*}
$$

The function $t \rightarrow e^{j \beta \sin \left(2 \pi f_{m} t\right)}$ being continuous and periodic with period $T_{m}=$ $\frac{1}{f_{m}}$, it admits the Fourier series representation

$$
e^{j \beta \sin \left(2 \pi f_{m} t\right)}=\sum_{k} c_{k} e^{j 2 \pi k f_{m} t}, \quad t \in \mathbb{R}
$$

with

$$
c_{k}=\frac{1}{T_{m}} \int_{-\frac{T_{m}}{2}}^{\frac{T_{m}}{2}} e^{j \beta \sin \left(2 \pi f_{m} t\right)} e^{-j 2 \pi k f_{m} t} d t, \quad k=0, \pm 1, \pm 2, \ldots
$$

Now fix $k=0, \pm 1, \pm 2, \ldots$ Upon making the change of variable $x=2 \pi f_{m} t$, we get

$$
\begin{align*}
c_{k} & =\frac{1}{T_{m}} \int_{-\frac{T_{m}}{2}}^{\frac{T_{m}}{2}} e^{j \beta \sin \left(2 \pi f_{m} t\right)} e^{-j 2 \pi k f_{m} t} d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin (x)-k x)} d x \\
& =J_{k}(\beta) \tag{3}
\end{align*}
$$

where

$$
J_{k}(\beta):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin (x)-k x)} d x, \quad \beta \in \mathbb{R}
$$

defines the $k^{\text {th }}$ order Bessel function of the first kind.
Substituting we find

$$
e^{j \beta \sin \left(2 \pi f_{m} t\right)}=\sum_{k} J_{k}(\beta) e^{j 2 \pi k f_{m} t}, \quad t \in \mathbb{R} .
$$

Therefore,

$$
\begin{align*}
A_{c} \cos \left(\theta_{\mathrm{FM}}(t)\right) & =A_{c} \Re\left(e^{j 2 \pi f_{c} t} e^{j \beta \sin \left(2 \pi f_{m} t\right)}\right) \\
& =A_{c} \Re\left(e^{j 2 \pi f_{c} t} \sum_{k} J_{k}(\beta) e^{j 2 \pi k f_{m} t}\right) \\
& =A_{c} \sum_{k} J_{k}(\beta) \Re\left(e^{j 2 \pi f_{c} t} e^{j 2 \pi k f_{m} t}\right) \\
& =A_{c} \sum_{k} J_{k}(\beta) \cos \left(2 \pi\left(f_{c}+k f_{m}\right) t\right), \quad t \in \mathbb{R} \tag{4}
\end{align*}
$$

In the frequency domain this last relationship becomes

$$
\begin{align*}
& S_{\mathrm{FM}}(f) \\
= & \frac{A_{c}}{2} \sum_{k} J_{k}(\beta)\left(\delta\left(f-\left(f_{c}+k f_{m}\right)\right)+\delta\left(f+\left(f_{c}+k f_{m}\right)\right)\right) \tag{5}
\end{align*}
$$

for all f in \mathbb{R}. Thus, although the single-tone signal m has frequency content only at the frequencies $f= \pm f_{m}$, the corresponding FM wave has infinite bandwidth since it displays frequency content at the countably infinite set of frequencies

$$
f= \pm\left(f_{c}+k f_{m}\right), \quad k=0, \pm 1, \ldots
$$

Narrow-band vs wide-band FM

Using elementary trigonometric formulae, we observe

$$
\begin{align*}
s_{\mathrm{FM}}(t)= & A_{c} \cos \left(\theta_{\mathrm{FM}}(t)\right) \\
= & A_{c} \cos \left(2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} m(r) d r\right) \\
= & A_{c} \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi k_{F} \int_{0}^{t} m(r) d r\right) \\
& \quad-A_{c} \sin \left(2 \pi f_{c} t\right) \sin \left(2 \pi k_{F} \int_{0}^{t} m(r) d r\right), \quad t \in \mathbb{R} \tag{6}
\end{align*}
$$

Narrow-band FM is characterized by

$$
\begin{equation*}
2 \pi k_{F}\left|\int_{0}^{t} m(r) d r\right| \ll 1, \quad t \in \mathbb{R} \tag{7}
\end{equation*}
$$

in which case

$$
\sin \left(2 \pi k_{F} \int_{0}^{t} m(r) d r\right) \simeq 2 \pi k_{F} \int_{0}^{t} m(r) d r
$$

and

$$
\cos \left(2 \pi k_{F} \int_{0}^{t} m(r) d r\right) \simeq 1
$$

for all t in \mathbb{R}. Therefore, we have the approximation

$$
\begin{equation*}
s_{\mathrm{FM}}(t) \simeq s_{\mathrm{NB}-\mathrm{FM}}(t), \quad t \in \mathbb{R} \tag{8}
\end{equation*}
$$

where the narrow-band FM signal $s_{\mathrm{NB}-\mathrm{FM}}: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\begin{align*}
s_{\mathrm{NB}-\mathrm{FM}}(t)= & A_{c} \cos \left(2 \pi f_{c} t\right) \\
& -A_{c} \sin \left(2 \pi f_{c} t\right)\left(2 \pi k_{F} \int_{0}^{t} m(r) d r\right), \quad t \in \mathbb{R} \tag{9}
\end{align*}
$$

In other words, when condition (7) holds, the FM waveform s_{FM} is well approximated by $s_{\mathrm{NB}-\mathrm{FM}}$ and therefore can be replaced by it. The advantage of doing so is that the signal $s_{\mathrm{NB}-\mathrm{FM}}$ is AM-like in its structure and can be generated easily according to techniques developed for amplitude modulation. Wide-band FM arises when the condition (7) fails to hold.

Carson's formula

The realization that the spectrum of s_{FM} has infinite extent leads to the following practical concern: How much bandwidth is needed to transmit $s_{\text {FM }}$ without too much distortion?

One answer to this question was given by Carson, and is summarized in the formula that carries his name: Carson's formula states that the transmission bandwidth B_{T} of the FM wave associated with the single-tone signal m should be set to

$$
\begin{align*}
B_{T, \text { Carson }} & :=2 f_{m}+2 \Delta f \\
& =2 f_{m}(1+\beta) \tag{10}
\end{align*}
$$

since $\Delta f=f_{m} \beta$ by definition.
One way to generalize Carson's bandwidth formula could proceed by formally giving the quantities f_{m} and β interpretations which do not rely on the specific form of the information-bearing signal m. We do this as follows:

In the single-tone case, the frequency f_{m} can be interpreted as the cutoff frequency of the signal - In other words, f_{m} is the bandwidth of the signal. On the other hand, Δf can be viewed as describing the largest possible excursion of the instantaneous frequency from f_{c} : Indeed, the instantaneous frequency of the FM wave at time t is given by

$$
\frac{1}{2 \pi} \frac{d}{d t} \theta_{\mathrm{FM}}(t)=f_{c}+k_{F} A_{m} \cos \left(2 \pi f_{m} t\right)
$$

and the corresponding deviation in instantaneous frequency at time t is simply

$$
\frac{1}{2 \pi} \frac{d}{d t} \theta_{\mathrm{FM}}(t)-f_{c}=k_{F} A_{m} \cos \left(2 \pi f_{m} t\right)
$$

Therefore, the maximal deviation from f_{c} is given by

$$
\sup \left(\left|k_{F} A_{m} \cos \left(2 \pi f_{m} t\right)\right|, \quad t \in \mathbb{R}\right)=k_{F} A_{m}=\Delta f
$$

Now consider an information bearing signal which is bandlimited with cutoff frequency $W>0$. With the discussion for the single-tone modulating signal in mind, it is natural to replace in Carson's formula f_{m} by W and Δf by D with

$$
D:=\sup \left(k_{F}|m(t)|, t \in \mathbb{R}\right) .
$$

This suggests the approximation

$$
B_{T} \simeq B_{T, \text { Carson }}
$$

with

$$
\begin{align*}
B_{T, \text { Carson }} & :=2 W+2 D \\
& =2 W(1+\beta) \tag{11}
\end{align*}
$$

where β is defined as

$$
\beta:=\frac{D}{W}=\frac{\sup \left(k_{F}|m(t)|, t \in \mathbb{R}\right)}{W}
$$

At this point, you may feel that the generalized Carson's formula discussed above is simply a formal expression without much practical grounding. We now show through an approximation argument (see below) that the bandwidth as given by $B_{T, \text { Carson }}$ is indeed meaningful from an engineering point of view.

The basic idea is to characterize the spectrum of the FM wave associated with a sampled version of the information-bearing signal. Thus, fix $T>0$. We approximate the information-bearing signal $m: \mathbb{R} \rightarrow \mathbb{R}$ by the staircase approximation $m_{T}^{\star}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
m_{T}^{\star}(t)=m(k T), \quad k T \leq t<(k+1) T
$$

with $k=0, \pm 1, \ldots$. We then replace $\theta_{\mathrm{FM}}: \mathbb{R} \rightarrow \mathbb{R}$ as defined above by $\theta_{\mathrm{FM}, T}^{\star}$: $\mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\theta_{\mathrm{FM}, T}^{\star}(t)=2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} m_{T}^{\star}(r) d r, \quad t \in \mathbb{R}
$$

and write

$$
s_{\mathrm{FM}, T}^{\star}(t)=A_{c} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right), \quad t \in \mathbb{R} .
$$

Fix f in \mathbb{R}. Note that

$$
\begin{align*}
S_{\mathrm{FM}, T}^{\star}(f) & =\int_{\mathbb{R}} A_{c} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right) e^{-j 2 \pi f t} d t \\
& =A_{c} \sum_{k} \int_{k T}^{(k+1) T} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right) e^{-j 2 \pi f t} d t \tag{12}
\end{align*}
$$

Now, for $k=0,1, \ldots$, with $k T \leq t<(k+1) T$, we have

$$
\begin{align*}
\theta_{\mathrm{FM}, T}^{\star}(t) & =2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} m_{T}^{\star}(r) d r \\
& =2 \pi f_{c} t+2 \pi k_{F}\left(T \sum_{\ell=0}^{k-1} m(\ell T)+m(k T)(t-k T)\right) \\
& =2 \pi\left(f_{c}+k_{F} m(k T)\right)(t-k T)+2 \pi T\left(k f_{c}+k_{F} \sum_{\ell=0}^{k-1} m(\ell T)\right) \\
\text { 3) } & =2 \pi\left(f_{c}+k_{F} m(k T)\right)(t-k T)+2 \pi \gamma_{k} T \tag{13}
\end{align*}
$$

where we have set

$$
\gamma_{k}:=k f_{c}+k_{F}\left(\sum_{\ell=0}^{k-1} m(\ell T)\right) .
$$

Direct substitution yields

$$
\begin{align*}
& \int_{k T}^{(k+1) T} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right) e^{-j 2 \pi f t} d t \\
= & \int_{k T}^{(k+1) T} \cos \left(2 \pi\left(f_{c}+k_{F} m(k T)\right)(t-k T)+2 \pi \gamma_{k} T\right) e^{-j 2 \pi f t} d t \\
= & e^{-j 2 \pi k f T} \cdot \int_{0}^{T} \cos \left(2 \pi\left(f_{c}+k_{F} m(k T)\right) \tau+2 \pi \gamma_{k} T\right) e^{-j 2 \pi f \tau} d \tau . \tag{14}
\end{align*}
$$

To evaluate this last integral, we note that

$$
\begin{align*}
& \int_{0}^{T} e^{ \pm j 2 \pi\left(\left(f_{c}+k_{F} m(k T)\right) \tau+\gamma_{k} T\right)} e^{-j 2 \pi f \tau} d \tau \\
= & e^{ \pm j 2 \pi \gamma_{k} T} \int_{0}^{T} e^{j 2 \pi\left(\pm\left(f_{c}+k_{F} m(k T)\right)-f\right) \tau} d \tau \\
= & e^{ \pm j 2 \pi \gamma_{k} T} \cdot \frac{e^{j 2 \pi\left(\pm\left(f_{c}+k_{F} m(k T)\right)-f\right) T}-1}{j 2 \pi\left(\pm\left(f_{c}+k_{F} m(k T)\right)-f\right)} \\
= & a_{k}^{ \pm}(f) \frac{\sin \left(\pi\left(\pm\left(f_{c}+k_{F} m(k T)\right)-f\right) T\right)}{\pi\left(\pm\left(f_{c}+k_{F} m(k T)\right)-f\right)} \\
= & a_{k}^{ \pm}(f) \frac{\sin \left(\pi\left(f \mp\left(f_{c}+k_{F} m(k T)\right)\right) T\right)}{\pi\left(f \mp\left(f_{c}+k_{F} m(k T)\right)\right)} \tag{15}
\end{align*}
$$

with

$$
a_{k}^{ \pm}(f)=e^{j 2 \pi \delta_{k}^{ \pm}(f) T}
$$

where

$$
\delta_{k}^{ \pm}(f)= \pm \gamma_{k}+\frac{1}{2}\left(\pm\left(f_{c}+k_{F} m(k T)\right)-f\right)
$$

Recall that the sinc function sinc : $\mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}, \quad x \in \mathbb{R}
$$

Therefore, for each $k=0,1, \ldots$, we have

$$
\int_{k T}^{(k+1) T} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right) e^{-j 2 \pi f t} d t
$$

$$
\begin{align*}
= & \frac{1}{2} a_{k}^{+}(f) \frac{\sin \left(\pi\left(f-\left(f_{c}+k_{F} m(k T)\right)\right) T\right)}{\pi\left(f-\left(f_{c}+k_{F} m(k T)\right)\right)} \\
& +\frac{1}{2} a_{k}^{-}(f) \frac{\sin \left(\pi\left(f+\left(f_{c}+k_{F} m(k T)\right)\right) T\right)}{\pi\left(f+\left(f_{c}+k_{F} m(k T)\right)\right)} \\
= & \frac{1}{2} a_{k}^{+}(f) \cdot \operatorname{sinc}\left(\left(f-\left(f_{c}+k_{F} m(k T)\right)\right) T\right) \\
& +\frac{1}{2} a_{k}^{-}(f) \cdot \operatorname{sinc}\left(\left(f+\left(f_{c}+k_{F} m(k T)\right)\right) T\right), \tag{16}
\end{align*}
$$

and we can conclude

$$
\begin{align*}
& \int_{0}^{\infty} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right) e^{-j 2 \pi f t} d t \\
& =\frac{1}{2} \sum_{k=0}^{\infty} a_{k}^{+}(f) \cdot \operatorname{sinc}\left(\left(f-\left(f_{c}+k_{F} m(k T)\right)\right) T\right) \\
& \quad+\frac{1}{2} \sum_{k=0}^{\infty} a_{k}^{-}(f) \cdot \operatorname{sinc}\left(\left(f+\left(f_{c}+k_{F} m(k T)\right)\right) T\right) . \tag{17}
\end{align*}
$$

The zeroes of the sinc function occur at $x= \pm \ell, \ell=1,2, \ldots$, and its main lobe occupies the interval $[-1,1]$. As a result, for each $k=0,1, \ldots$, the main contribution of the term

$$
\frac{1}{2} a_{k}^{ \pm}(f) \cdot \operatorname{sinc}\left(\left(f \mp\left(f_{c}+k_{F} m(k T)\right)\right) T\right)
$$

is taking place on an an interval centered at

$$
\pm\left(f_{c}+k_{F} m(k T)\right)
$$

and of length $2 / T$, namely

$$
\left[\pm\left(f_{c}+k_{F} m(k T)\right)-\frac{1}{T}, \pm\left(f_{c}+k_{F} m(k T)\right)+\frac{1}{T}\right]
$$

Similar arguments could be made for the case $k=-1,-2, \ldots$ and would lead to a similar expression for

$$
\int_{-\infty}^{0} \cos \left(\theta_{\mathrm{FM}, T}^{\star}(t)\right) e^{-j 2 \pi f t} d t, \quad f \in \mathbb{R}
$$

The discussion suggests that most of the spectral content is contained in the interval

$$
\left[\pm\left(f_{c}-D\right)-\frac{1}{T}, \pm\left(f_{c}+D\right)+\frac{1}{T}\right]
$$

since

$$
\left|k_{F} m(k T)\right| \leq D, \quad k=0, \pm 1, \ldots
$$

by the definition of D. This leads to estimating the transmission bandwidth of $s_{\mathrm{FM}, T}^{\star}$ as being

$$
B_{T} \simeq 2 D+\frac{2}{T}
$$

If we sample at the Nyquist rate, that is $T=\frac{1}{2 W}$, then the information contained in m is recoverable from m_{T}^{\star}, and the transmission bandwidths of their corresponding FM waveforms should be commensurate. In short,

$$
B^{\star}=2 D+4 W
$$

is expected to provide a reasonably good approximation to B_{T}. Note that

$$
B^{\star}=2 D+2 W+2 W=B_{T, \text { Carson }}+2 W
$$

so that this argument provides an approximation to the transmissison bandwith of the FM wave s_{FM} which is more conservative than the one provide by Carson's formula. This can be traced to the fact that the approximation is based on a sampling argument.

Immunity of angle modulation to non-linearities
Consider a non-linear device $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
\varphi(x)=\sum_{m=1}^{M} a_{m} x^{m}, \quad x \in \mathbb{R}
$$

for some integer $M \geq 2$ and assume $a_{M} \neq 0$.
For each t in \mathbb{R}, we note that

$$
\varphi\left(s_{\mathrm{FM}}(t)\right)=\sum_{m=1}^{M} a_{m}\left(A_{c} \cos \left(\theta_{\mathrm{FM}}(t)\right)\right)^{m}
$$

$$
\begin{align*}
& =\sum_{m=1}^{M} a_{m} A_{c}^{m}\left(\cos \left(\theta_{\mathrm{FM}}(t)\right)\right)^{m} \\
& =\sum_{m=1}^{M} a_{m} A_{c}^{m}\left(\sum_{k=0}^{m} a_{m, k} \cos \left(k \theta_{\mathrm{FM}}(t)\right)\right) \tag{18}
\end{align*}
$$

as we invoke Lemma 0.1 in the last step. Interchanging the order of summation we conclude that

$$
\begin{align*}
\varphi\left(s_{\mathrm{FM}}(t)\right)= & \sum_{m=1}^{M} a_{m} A_{c}^{m} a_{m, 0} \\
& +\sum_{k=1}^{M}\left(\sum_{m=k}^{M} a_{m} A_{c}^{m} a_{m, k}\right) \cos \left(k \theta_{\mathrm{FM}}(t)\right) \\
= & \sum_{\ell=0}^{M} B_{M, \ell} \cos \left(\ell \theta_{\mathrm{FM}}(t)\right) \tag{19}
\end{align*}
$$

with

$$
B_{M, \ell}= \begin{cases}\sum_{m=1}^{M} a_{m} A_{c}^{m} a_{m, 0} & \text { if } \ell=0 \tag{20}\\ \sum_{m=\ell}^{M} a_{m} A_{c}^{m} a_{m, \ell} & \text { if } \ell=1, \ldots, M\end{cases}
$$

For each $\ell=1, \ldots, M$, the signal $t \rightarrow \cos \left(\ell \theta_{\mathrm{FM}}(t)\right)$ is the FM waveform at carrier frequency ℓf_{c} generated by the signal $t \rightarrow \ell m(t)$. According to the generalized Carson's rule, for all practical intent, we can view this signal as a bandpass signal whose (transmission) bandwidth B_{ℓ} is given by

$$
B_{\ell}=2\left(W+D_{\ell}\right) \quad \text { with } \quad D_{\ell}=\ell D
$$

since

$$
\begin{align*}
D_{\ell} & =\sup \left(k_{F}|\ell m(t)|, t \in \mathbb{R}\right) \\
& =\ell \sup \left(k_{F}|m(t)|, t \in \mathbb{R}\right)=\ell D \tag{21}
\end{align*}
$$

Under the appropriate conditions each of the components $t \rightarrow \cos \left(\ell \theta_{\mathrm{FM}}(t)\right)$ can be extracted from $\varphi\left(s_{\mathrm{FM}}\right)$ by means of bandpass filtering. For instance, to recover s_{FM} from $\varphi\left(s_{\mathrm{FM}}\right)$ we pass the latter through a bandpass filter centered at f_{c} with bandwidth B_{1} such that

$$
f_{c}+\frac{B_{1}}{2}<2 f_{c}-\frac{B_{2}}{2} .
$$

This is equivalent to

$$
f_{c}+(W+D)<2 f_{c}-(W+2 D)
$$

and requires that the condition

$$
2 W+3 D<f_{c}
$$

holds.
Similar arguments can be given for extracting $t \rightarrow \cos \left(\theta_{\mathrm{FM}}(t)\right)$ by means of bandpass filtering.

Generating FM signals

Indirect method of Armstrong We seek to generate the FM signal $s_{\mathrm{FM}}: \mathbb{R} \rightarrow$ \mathbb{R} associated with the information-bearing signal m, say

$$
s_{\mathrm{FM}}(t)=A_{c} \cos \left(\theta_{\mathrm{FM}}(t)\right), \quad t \in \mathbb{R}
$$

with

$$
\theta_{\mathrm{FM}}(t)=2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} m(r) d r, \quad t \in \mathbb{R}
$$

for some given $k_{F}>0$. We are in the situation when the condition (7) fails to hold for the choice of k_{F} so that $s_{\mathrm{NB}-\mathrm{FM}}$ is not a good approximation to the desired FM signal $s_{\text {FM }}$.

We begin by writing $k_{F}=M k_{F}^{\star}$ for some positive integer M, so that the condition (7) now holds for k_{F}^{\star}, namely

$$
2 \pi k_{F}^{\star}\left|\int_{0}^{t} m(r) d r\right| \ll 1, \quad t \in \mathbb{R}
$$

Under this condition the FM signal $s_{\mathrm{FM}}^{\star}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
s_{\mathrm{FM}}^{\star}=A_{c} \cos \left(2 \pi f_{c} t+2 \pi k_{F}^{\star} \int_{0}^{t} m(s) d s\right), \quad t \in \mathbb{R}
$$

can be well aprroximated by the narrow-band FM signal $s_{\mathrm{NB}-\mathrm{FM}}^{\star}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
s_{\mathrm{NB}-\mathrm{FM}}^{\star}(t)= & A_{c} \cos \left(2 \pi f_{c} t\right) \\
& -A_{c} \sin \left(2 \pi f_{c} t\right)\left(2 \pi k_{F}^{\star} \int_{0}^{t} m(r) d r\right), \quad t \in \mathbb{R} . \tag{22}
\end{align*}
$$

Next, the narrow-band FM signal $s_{\mathrm{NB}-\mathrm{FM}}^{\star}: \mathbb{R} \rightarrow \mathbb{R}$ is converted to the desired wide-band FM signal as follows: Consider a non-linear device $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
\varphi(x)=\sum_{m=1}^{M} a_{m} x^{m}, \quad x \in \mathbb{R}
$$

with $a_{M} \neq 0$.
For each t in \mathbb{R}, with

$$
\theta_{\mathrm{FM}}^{\star}(t)=2 \pi f_{c} t+2 \pi k_{F}^{\star} \int_{0}^{t} m(r) d r
$$

we note from (19)-(20) that

$$
\begin{equation*}
\varphi\left(s_{\mathrm{FM}}^{\star}(t)\right)=\sum_{\ell=0}^{N} B_{N, \ell} \cos \left(\ell \theta_{\mathrm{FM}}^{\star}(t)\right) \tag{23}
\end{equation*}
$$

with the coefficients as given by (20).
By the same arguments as given earlier in the discussion of immunity of angle modulation to non-linearities, we can extract the signal $t \rightarrow \cos \left(M \theta_{\mathrm{FM}}^{\star}(t)\right)$ by feeding the signal $t \rightarrow \varphi\left(s_{\mathrm{FM}}^{\star}(t)\right)$ through a bandpass filter with center frequency $N f_{c}$ and bandwidth B_{M}^{\star} given by

$$
B_{M}^{\star}=2\left(W+D_{M}^{\star}\right)
$$

where for each $\ell=1,2, \ldots$, we have

$$
\begin{align*}
D_{\ell}^{\star} & =\sup \left(k_{F}^{\star}|\ell m(t)|, t \in \mathbb{R}\right) \\
& =\ell \sup \left(k_{F}^{\star}|m(t)|, t \in \mathbb{R}\right) \\
& =\frac{\ell}{M} \sup \left(k_{F}|m(t)|, t \in \mathbb{R}\right) \\
& =\frac{\ell}{M} \cdot D \tag{24}
\end{align*}
$$

As a result,

$$
B_{M}^{\star}=2\left(W+D_{M}^{\star}\right)=2(W+D)
$$

as should be expected!

Direct method Using a voltage-controlled oscillator (VCO)

Demodulation of FM signals
The FM waveform is given by

$$
s_{\mathrm{FM}}(t)=A_{c} \cos \left(\theta_{\mathrm{FM}}(t)\right), \quad t \in \mathbb{R}
$$

with

$$
\theta_{\mathrm{FM}}(t)=2 \pi f_{c} t+2 \pi k_{F} \int_{0}^{t} m(r) d r, \quad t \in \mathbb{R}
$$

Assuming sufficient differentiability for m, we note that

$$
\begin{align*}
\frac{d}{d t} s_{\mathrm{FM}}(t) & =-A_{c}\left(\frac{d}{d t} \theta_{\mathrm{FM}}(t)\right) \cdot \sin \left(\theta_{\mathrm{FM}}(t)\right) \\
& =-A_{c}\left(2 \pi f_{c}+2 \pi k_{F} m(t)\right) \cdot \sin \left(\theta_{\mathrm{FM}}(t)\right) \\
& =-2 \pi A_{c}\left(f_{c}+k_{F} m(t)\right) \cdot \sin \left(\theta_{\mathrm{FM}}(t)\right), \quad t \in \mathbb{R} . \tag{25}
\end{align*}
$$

This calculation highlights the fact that differentiating an FM waveform produces a signal that combines both amplitude and angle modulation. It raises the possibility of using an envelope detector to extract the information bearing signal m. This will be possible if

$$
f_{c}+k_{F} m(t)>0, \quad t \in \mathbb{R}
$$

This occurs when

$$
D<f_{c} .
$$

The analysis just given is predicated on the amplitude of the FM waveform remaining constant over time. In practice, this condition is not expected to hold. In fact in a number of situations, amplitude distortion can be significant and it is appropriate to model the received signal $s_{\mathrm{FM}, \mathrm{Rec}}: \mathbb{R} \rightarrow \mathbb{R}$ to be of the form

$$
\begin{equation*}
s_{\mathrm{FM}, \mathrm{Rec}}(t)=A(t) \cos \left(\theta_{\mathrm{FM}}(t)\right), \quad t \in \mathbb{R} \tag{26}
\end{equation*}
$$

for some $A: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
A(t)>0, \quad t \in \mathbb{R} \tag{27}
\end{equation*}
$$

Under (26)-(27) the earlier procedure of differentiating the incoming signal and passing the result through an envelope detector will not work anymore: Indeed, assuming enough differentiability, we now have

$$
\frac{d}{d t} s_{\mathrm{FM}, \mathrm{Rec}}(t)
$$

$$
\begin{aligned}
& =-A(t)\left(\frac{d}{d t} \theta_{\mathrm{FM}}(t)\right) \cdot \sin \left(\theta_{\mathrm{FM}}(t)\right)+\left(\frac{d}{d t} A(t)\right) \cdot \cos \left(\theta_{\mathrm{FM}}(t)\right) \\
(28) & =-2 \pi A(t)\left(f_{c}+k_{F} m(t)\right) \cdot \sin \left(\theta_{\mathrm{FM}}(t)\right)+\left(\frac{d}{d t} A(t)\right) \cdot \cos \left(\theta_{\mathrm{FM}}(t)\right) .
\end{aligned}
$$

The approach based on envelope detection used when the amplitude remained constant will not work here due to the presence of the unknown and time-varying term

$$
\left(\frac{d}{d t} A(t)\right) \cdot \cos \left(\theta_{\mathrm{FM}}(t)\right), \quad t \in \mathbb{R}
$$

We can remedy to this difficulty by preprocessing $s_{\text {FM, Rec }}$ with the aim of extracting the original waveform s_{FM}. One possible way to achieve this goal is presented next.

Consider the hard-limiter $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\Phi(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \tag{29}\\
0 & \text { if } x=0 \\
1 & \text { if } x>0
\end{array}\right.
$$

For each t in \mathbb{R}, as we recall that $A(t)>0$, we note that

$$
\begin{align*}
v(t) & :=\Phi\left(s_{\mathrm{FM}-\mathrm{Rec}}(t)\right) \\
& =\Phi\left(A(t) \cos \left(\theta_{\mathrm{FM}}(t)\right)\right) \\
& =\Phi\left(\cos \left(\theta_{\mathrm{FM}}(t)\right)\right) \tag{30}
\end{align*}
$$

Next, observe that the mapping $\theta \rightarrow \Phi(\cos \theta)$ is a periodic function with period 2π - In fact, this function is just the periodic square wave function and therefore admits a Fourier series respresentation, say

$$
\begin{equation*}
\Phi(\cos \theta)=\sum_{k} c_{k} e^{j k \theta}, \quad \theta \in \mathbb{R} \tag{31}
\end{equation*}
$$

with

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Phi(\cos \theta) e^{-j k \theta} d \theta, \quad k=0, \pm 1, \ldots
$$

After some straightforward calculations (see below) we conclude that

$$
\Phi(\cos \theta)=\frac{4}{\pi}\left(\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{2 \ell+1} \cos ((2 \ell+1) \theta)\right), \quad \theta \in \mathbb{R}
$$

As a result,

$$
\begin{align*}
v(t) & =\Phi\left(\cos \left(\theta_{\mathrm{FM}}(t)\right)\right) \\
& =\frac{4}{\pi}\left(\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{2 \ell+1} \cos \left((2 \ell+1) \theta_{\mathrm{FM}}(t)\right)\right) \tag{32}
\end{align*}
$$

Again, as was the case in the discussion of demodulation of FM signals, we note that for each $\ell=0,1, \ldots$, the signal $t \rightarrow \cos \left((2 \ell+1) \theta_{\mathrm{FM}}(t)\right)$ is the FM waveform at carrier frequency $(2 \ell+1) f_{c}$ generated by the signal $t \rightarrow(2 \ell+1) m(t)$. According to the generalized Carson's rule, we can view this signal as a bandpass signal with bandwidth $B_{2 \ell+1}$ If we pass the signal v through a banpass filter with center frequency f_{c} and bandwidth $2 W+2 D$ we will collect the signal $t \rightarrow \frac{4}{\pi} \cos \left(\theta_{\mathrm{FM}}(t)\right)$, as required. The earlier procedure outlined earlier, namely feeding into a differentiator followed by an envelope detector, can now be used on this resulting waveform.

Properties of Bessel functions

0. For each $k=0, \pm 1, \ldots$ and every β in $\mathbb{R}, J_{k}(\beta)$ is an element of \mathbb{R}.

Proof. Fix $k=0, \pm 1, \ldots$ and β in \mathbb{R}. Note that

$$
\begin{align*}
J_{k}(\beta)^{\star} & =\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x-k x)} d x\right)^{\star} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-j(\beta \sin x-k x)} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(-\beta \sin x+k x)} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin (-x)-k(-x))} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin y-k y)} d y \\
& =J_{k}(\beta) . \tag{33}
\end{align*}
$$

Hence $J_{k}(\beta)^{\star}=J_{k}(\beta)$, and $J_{k}(\beta)$ is an element of \mathbb{R}.

1. For each $k=0,1, \ldots$, we have

$$
J_{-k}(\beta)=(-1)^{k} J_{k}(\beta), \quad \beta \in \mathbb{R}
$$

Proof. Fix $k=0,1, \ldots$ and β in \mathbb{R}. Using the change of variable $y=\pi-x$ we find

$$
\begin{align*}
J_{-k}(\beta) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x+k x)} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin (\pi-y)+k(\pi-y))} d y \\
& =\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin y-y))} d y\right) \cdot e^{j k \pi} \\
& =(-1)^{k} J_{k}(\beta) \tag{34}
\end{align*}
$$

since $e^{j k \pi}=(-1)^{k}$.
2. For each $k=0,1, \ldots$, we have

$$
J_{k}(-\beta)=(-1)^{k} J_{k}(\beta), \quad \beta \geq 0
$$

Proof. Fix $k=0,1, \ldots$ and $\beta \geq 0$. We note that

$$
\begin{align*}
J_{k}(-\beta) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(-\beta \sin y-k y)} d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin (-y)+k(-y))} d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x+k x)} d x \\
& =J_{-k}(\beta) \tag{35}
\end{align*}
$$

and the conclusion follows by Fact 1.
3. We have

$$
J_{0}(\beta)=1+O(\beta) \quad(\beta \rightarrow 0)
$$

Proof. Fix β in \mathbb{R}. From the definitions we see that

$$
\begin{align*}
J_{0}(\beta)-1 & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(e^{j \beta \sin x}-1\right) d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\int_{0}^{\beta \sin x} j e^{j t} d t\right) d x \tag{36}
\end{align*}
$$

so that

$$
\begin{align*}
\left|J_{0}(\beta)-1\right| & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\int_{0}^{\beta \sin x} j e^{j t} d t\right| d x \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\int_{0}^{|\beta \sin x|}\right| j e^{j t}|d t| d x \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|\beta||\sin x| d x \\
& \leq|\beta| \tag{37}
\end{align*}
$$

and the conclusion follows.
4. We have

$$
J_{1}(\beta)=\frac{\beta}{2}(1+o(1)) \quad(\beta \rightarrow 0)
$$

5. For each $\ell=0,1, \ldots$ we have

$$
J_{\ell}(\beta)=\frac{\beta^{\ell}}{2^{\ell} \ell!}(1+o(1)) \quad(\beta \rightarrow 0)
$$

6. For each β in \mathbb{R}, we have

$$
\sum_{\ell}\left|J_{\ell}(\beta)\right|^{2}=1
$$

Proof. For each β in \mathbb{R}, the function $x \rightarrow e^{j \sin x}$ is periodic with period 2π and therefore admits a Fourier series representation. It is a simple matter to see that

$$
e^{j \sin x}=\sum_{\ell} J_{k}(\beta) e^{j \ell x}
$$

and by Parseval's Theorem we get

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|e^{j \beta \sin x}\right|^{2} d x=\sum_{\ell}\left|J_{\ell}(\beta)\right|^{2}
$$

The conclusion follows from the fact that

$$
\left|e^{j \beta \sin x}\right|^{2}=1, \quad x \in \mathbb{R}
$$

On powers of $\cos \theta$ \qquad
Given is θ in \mathbb{R}. We are interested in understanding how to compute

$$
(\cos \theta)^{m}, \quad m=1,2, \ldots
$$

We shall repeatedly use the trigonometric identity

$$
2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)
$$

for arbitrary α and β in \mathbb{R}.
For $m=2$, we have

$$
\begin{equation*}
(\cos \theta)^{2}=\frac{\cos (2 \theta)+1}{2} \tag{38}
\end{equation*}
$$

Next, with $m=3$,

$$
\begin{align*}
(\cos \theta)^{3} & =\frac{\cos (2 \theta)+1}{2} \cdot \cos \theta \\
& =\frac{\cos (2 \theta) \cos \theta+\cos \theta}{2} \\
& =\frac{\frac{\cos (3 \theta)+\cos \theta}{2}+\cos \theta}{2} \\
& =\frac{\cos (3 \theta)+3 \cos \theta}{4} \tag{39}
\end{align*}
$$

Building on the pattern emerging from these calculations we now set out to prove the following fact.

Lemma 0.1 Given θ in \mathbb{R}, for each $m=1,2, \ldots$, there exist scalars $a_{m, 0}, \ldots, a_{m, m}$, independent of θ, such that

$$
\begin{equation*}
(\cos \theta)^{m}=\sum_{k=0}^{m} a_{m, k} \cos (k \theta) \tag{40}
\end{equation*}
$$

Proof. The proof proceeds by induction. The conclusion (40) is true for $m=1$ (with $a_{1,0}=0$ and $a_{1,1}=1$), for $m=2$ (with $a_{2,0}=\frac{1}{2}, a_{2,1}=0$ and $a_{2.2}=\frac{1}{2}$) and for $m=3$ (with $a_{3,0}=0, a_{3,1}=\frac{3}{2}, a_{3,2}=0$ and $a_{3,3}=\frac{1}{4}$).

Now assume (40) to hold for some $m \geq 2$. We note that

$$
\begin{aligned}
(\cos \theta)^{m+1} & =(\cos \theta)^{m} \cdot \cos \theta \\
& =\left(\sum_{k=0}^{m} a_{m, k} \cos (k \theta)\right) \cdot \cos \theta \\
& =a_{m, 0} \cos \theta+\sum_{k=1}^{m} a_{m, k} \cos (k \theta) \cos \theta \\
& =a_{m, 0} \cos \theta+\sum_{k=1}^{m} a_{m, k} \frac{\cos ((k+1) \theta)+\cos ((k-1) \theta)}{2} \\
& =a_{m, 0} \cos \theta+\frac{1}{2} \sum_{k=1}^{m} a_{m, k} \cos ((k+1) \theta)+\frac{1}{2} \sum_{k=1}^{m} a_{m, k} \cos ((k-1) \theta) \\
& =a_{m, 0} \cos \theta+\frac{1}{2} \sum_{k=2}^{m+1} a_{m, k-1} \cos (k \theta)+\frac{1}{2} \sum_{k=0}^{m-1} a_{m, k+1} \cos (k \theta) \\
& =\sum_{k=0}^{m+1} a_{m+1, k} \cos (k \theta)
\end{aligned}
$$

with

$$
a_{m+1, k}= \begin{cases}\frac{a_{m, 1}}{2} & \text { if } k=0 \\ a_{m, 0}+\frac{a_{m, 2}}{2} & \text { if } k=1 \\ \frac{1}{2}\left(a_{m, k-1}+a_{m, k+1}\right) & \text { if } k=2, \ldots, m-1 \\ \frac{a_{m, m-1}}{2} & \text { if } k=m \\ \frac{a_{m, m}}{2} & \text { if } k=m+1\end{cases}
$$

by direct inspection. This completes the proof of Lemma 0.1.

Computing the Fourier coefficients for $\Phi(\cos \theta)$ \qquad
Recall that

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Phi(\cos \theta) e^{-j k \theta} d \theta, \quad k=0, \pm 1, \ldots
$$

with Φ as defined at (29). Thus,

$$
\begin{align*}
& \int_{-\pi}^{\pi} \Phi(\cos \theta) e^{-j k \theta} d \theta \\
= & -\int_{-\pi}^{-\frac{\pi}{2}} e^{-j k \theta} d \theta+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-j k \theta} d \theta-\int_{\frac{\pi}{2}}^{\pi} e^{-j k \theta} d \theta \\
= & \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-j k \theta} d \theta-\int_{\frac{\pi}{2}}^{\pi}\left(e^{j k \theta}+e^{-j k \theta}\right) d \theta \\
= & \frac{e^{-j k \frac{\pi}{2}}-e^{j k \frac{\pi}{2}}}{-j k}-2 \int_{\frac{\pi}{2}}^{\pi} \cos (k \theta) d \theta \\
= & \frac{2}{k} \sin \left(k \frac{\pi}{2}\right)-\frac{2}{k}\left(\sin (k \pi)-\sin \left(k \frac{\pi}{2}\right)\right) \\
= & \frac{4}{k} \sin \left(k \frac{\pi}{2}\right)-\frac{2}{k} \sin (k \pi) \\
= & \frac{4}{k} \sin \left(k \frac{\pi}{2}\right) . \tag{42}
\end{align*}
$$

$$
\sin \left(k \frac{\pi}{2}\right)= \begin{cases}(-1)^{\ell} & \text { if } k=2 \ell+1 \\ 0 & \text { if } k=2 \ell\end{cases}
$$

with $\ell=0, \pm 1, \ldots$.

