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COMMUNICATIONS SYSTEMS

ANGLE MODULATION

Throughout, we consider the information-bearing sigmnat R — R. Its
Fourier transform is given by

M(f) = /Rm(t)e_j?”ftdt, feRr.

Frequency modulation

The FM waveformsgy : R — R associated with the information-bearing
signalm is given by

SFM (t) = A_.cos (QFM (t)) , te R
with .
Oena(t) = 27 fit + 2y / m(r)dr, teR.
0

Phase modulation

The PM waveformspy; : R — R associated with the information-bearing
signalm is given by

SPM (t) = A.cos (OPM (t)) , te R

with
HPM(t) = 27cht + ]CpTTL(t), t e R.

Single-tone modulating signals
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In an attempt to understand how the spectrum of angle-modulated signals is
shaped by that of the modulating signal, we consider the simple case of a single-
tone modulating signah : R — R, say

m(t) = Apcos (2mft), teR

with amplitudeA,, > 0 and frequency,, > 0. In that case, we note that

t
Opnm(t) = 2mf.t + 2mkp / Ay, cos (27 fr,r) dr
0

= 2nft+ 2w ZFAm sin (27 fy,t)

= 2nfit+ kA sin (27 fout)
Q) = 2w fi+ PBsin(2nf,t), tER
where A

b= f—f and Af :=kpA,,.

Next,
cos (Opm(t)) = cos (2w f.t + Bsin (27 fiut))

(2) - R (6j27rfct6jﬁsin(27rfmt)) ., teR.

The functiont — 7852(27/m!) peing continuous and periodic with peri@y, =
fim, it admits the Fourier series representation

ejﬂsin(Zﬂfmt) _ chkej%rkfmt’ teR
with
Tm
cp = L 2 eIBsin(2m fnt) =52k fmt 1y =0.+1.42.. ..
Tm 7% ) Y Y Y

Now fix £ = 0, 4+1,+£2,.... Upon making the change of variabte= 2x f,,.t,
we get

Tm
cr, = i ? 6]6 Sin(Qﬂfmt)e_jQkamtdt
T _In
1 T

- = oI (Bsin(z)—kz) 7,
2 J_.

(3) = Ji(0)
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where
1

Je(B) = —/ I Osin@ ko) gy 3 e R

27

defines the&:!" order Bessel function of the first kind.
Substituting we find

ejﬁsm 27 fimt) Z Jk ej27rkfmt7 t e R.

Therefore,
Accos (Op(t)) = AR (e2mIeteIFsinnimt)
— AR <€j2wfctzk Tl ﬂ)emkfmt)
— A Z Te(B)R (e7271et i2mhimt
(4) = AZJkﬁcos o (fo+ kfn)t), teRR.
In the frequency domain this last relationship becomes
SFM(f)
(5) — —Z Te(B) (6(f = (fe+Efm)) +0(f + (fe+ kfm))

for all f in R. Thus, although the single-tone signahas frequency contennly
at the frequencieg = +f,,, the corresponding FM wave haginite bandwidth
since it displays frequency content at the countably infinite set of frequencies

f=2x(fe+kfn), k=0,%1,....

Narrow-band vs wide-band FM

Using elementary trigopnometric formulae, we observe

SFM (t) = AC COS(QFM (t))

t
= A,cos (27rfct + 27rkp/ m(r)dr)
0

= A.cos (27 f.t) cos <27rk:p /t m(r)dr)
0
(6) — A.sin (27 f.t) sin (27rkp/ m(r)dr) , teR
0
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Narrow-band FMis characterized by

/0 t m(r)dr

t ¢
sin (Qﬂ'k‘p/ m(r)dr) :27rkp/ m(r)dr
0 0
t
Cos (ZWkF/ m(r)dr) ~1
0

for all £ in R. Therefore, we have the approximation

(7) 27T]€F < ]., teR

in which case

and

(8) sem(t) ~ snp-rm(t), t€R
where the narrow-band FM signalg_ry : R — R is defined by
SNB—FM(t) = AC COS (27cht)

9 — Agsin (27 f.t) (27rk:p /Ot m(r)dr) , teR.

In other words, when condition (7) holds, the FM wavefosi, is well approx-
imated bysxg_rym and therefore can be replaced by it. The advantage of doing
so is that the signalyg_ru IS AM-like in its structure and can be generated eas-
ily according to techniques developed for amplitude modulatWide-band FM
arises when the condition (7) fails to hold.

Carson'’s formula

The realization that the spectrumgf,; has infinite extent leads to the follow-
ing practical concern: How much bandwidth is needed to trangmitvithout too
much distortion?

One answer to this question was given by Carson, and is summarized in the
formula that carries his name: Carson’s formula states that the transmission band-
width By of the FM wave associated with the single-tone signadhould be set
to

BT,Carson = 2fm+2Af
(10) = 2fm(1+0)
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sinceA f = f,,5 by definition.

One way to generalize Carson’s bandwidth formula could proceéarimally
giving the quantitiesf,, and 3 interpretations which do not rely on the specific
form of the information-bearing signat. We do this as follows:

In the single-tone case, the frequengy can be interpreted as the cutoff fre-
guency of the signal — In other wordg,, is the bandwidth of the signal. On the
other handA f can be viewed as describing the largest possible excursion of the
instantaneous frequency frof: Indeed, the instantaneous frequency of the FM
wave at timel is given by

1 d
%%QFM@) = fo+ kpA,, cos (27 f,,t)

and the corresponding deviation in instantaneous frequency at tsrsemply

1 d
5%91?1\4(?5) — fe = kpA,, cos (2T fint) .
Therefore, the maximal deviation froffa is given by

sup (|kpAm cos 2nfnt)|, t€R)=kpA,, =Af.

Now consider an information bearing signal which is bandlimited with cutoff
frequencyl > 0. With the discussion for the single-tone modulating signal in
mind, it is natural to replace in Carson’s formylg by W andA f by D with

D :=sup (kp |m(t)|, t € R).
This suggests the approximation
Br ~ Bt carson
with

BT,Carson = 2W +2D
(11) = AW (1+5)

where( is defined as

D _sup(ke|m(t)]. t € R)

=W W |
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At this point, you may feel that the generalized Carson’s formula discussed
above is simply a formal expression without much practical grounding. We now
show through an approximation argument (see below) that the bandwidth as given
by Br carson 1S indeed meaningful from an engineering point of view.

The basic idea is to characterize the spectrum of the FM wave associated with
asampledrersion of the information-bearing signal. Thus,fix> 0. We approx-
imate the information-bearing signal : R — R by the staircase approximation
mZ% : R — R given by

mi(t) = m(kT), kT <t < (k+1)T

with £ = 0,41,.... We then replacér,; : R — R as defined above b, ; :
R — R given by

t
O r(t) =27 fet + 27T/€F/ miy(r)dr, teR
0

and write
SE‘M,T(t) = Ac COs (QE‘M,T(t)) , te€ R.
Fix f in R. Note that

Stmr(f) = /RAC cos (%M’T(t)) e—I2mft gy
(k+1)T

(12) = Aczk/k cos (B (t)) e 7™ dt.

T

Now, fork =0,1,...,with kT <t < (k+ 1)T, we have

t
Ormr(t) = 27cht—|—27rk‘p/0 m(r)dr

k-1

= 2nfit+ 2mkp (T Y m(¢T) + m(kT)(t — k:T))
=0
= 21(f. + kpm(kT))(t — kT) + 2T (k fot kp i m(éT))
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where we have set

Ve = kfe+ kp (Z m(ﬁT)) .

=0
Direct substitution yields

(k+1)T '
/ cos (O r(t)) e I Ity
k

T
(k+1)T |
= / cos (27 (f. + kpm(kT))(t — kT) + 27y T) e 72/ dt
kT
T
(14) = e*jQﬂka . / COS (27T<fc + ka<kT))7. 4 27T”)/kT) e*jQTl’deT.
0

To evaluate this last integral, we note that

T
/ eij27r((fc+kpm(kT))T+'ykT)efj27rf7d7_
0

T
_ eijzka/ ej?ﬂ'(i(fc#’kpm(kT))ff)TdT
0

2 (E(fetkpm(KT)~ T _
327 (£(fe + kpm(kT)) — f)

sin (7 (£(fe + krm(kT)) — ) T)
™ (£(fe + krpm(kT)) — f)

sin (7 (f F (fe + kpm(kT))) T)

eij2ﬂ"ykT .

= a (f)

(15) = a;(f) 7 (f T (fo + kpm(kT)))
ith

i at (1) = PR

where

1
0 (f) = m + 5 (E(fe + kpm(KT)) = f).
Recall that the sinc functioginc : R — R is given by

sinc(x) = sm(mz;)’ x e R.
T

Therefore, foreach =0, 1, ..., we have

(k+1)T A
/ cos (O p(t)) e Ity
kT
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()80 U = (ot k(1) T
R = U e ()
Ly (S E U+ (e kem(ET) T)
2 D et hemlRT)))
= Je () sine ((F = (o + kem(kT)) 7)
(16) () sine ( + (fe+ hem(KT)) T,

1
2

and we can conclude

(17) TS ar () sine ((F + (o + kem(RT)) T).

The zeroes of the sinc function occuraat= +/4, ¢/ = 1,2,..., and its main
lobe occupies the interval-1, 1]. As a result, for eaclt = 0,1, ..., the main
contribution of the term

Saf (1) - sine (7 F (e + kem(KT)) T)

is taking place on an an interval centered at
+(fe + krm(kT))

and of length2 /7", namely

[i(fc + kpm(kT)) — %, +(f. + kpm(kT)) + % :

Similar arguments could be made for the case —1, —2, ... and would lead to
a similar expression for

0
/ cos (Ofy (1)) e 7™ tdt,  f €R.
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The discussion suggests that most of the spectral content is contained in the

interval ]
1
+(f,— D) — =, &(f.+ D —
(fe=D) = 7 £(fe+ D) +
since

\krpm(kT)| < D, k=0,+1,...

by the definition ofD. This leads to estimating the transmission bandwidth of
spum,r as being

2
If we sample at the Nyquist rate, thatis= ﬁ then the information con-

tained inm is recoverable fromn}., and the transmission bandwidths of their
corresponding FM waveforms should be commensurate. In short,

B*=2D +4W
is expected to provide a reasonably good approximatids;toNote that
B* = 2D +2W + 2W = Br carson + 2W

so that this argument provides an approximation to the transmissison bandwith
of the FM wavesgy; which is more conservative than the one provide by Car-
son’s formula. This can be traced to the fact that the approximation is based on a
sampling argument.

Immunity of angle modulation to non-linearities

Consider a non-linear devige: R — R of the form

M
o(x) = Z ame™, v eR

m=1

for some integef/ > 2 and assume;; # 0.
For each in R, we note that

M

plsma(t) = > am (Accos(Brm(t)))"

m=1
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M=

am Ay (cos(Orm(t)))™

amAzn <Z Am k COS(kJ@FM (t)))

k=0

3
I

M=

(18) =

1

3
I

as we invoke Lemma 0.1 in the last step. Interchanging the order of summation
we conclude that

M
plsen(t) = D amAlam

m=1
M

m=k

M
(19) = ZBM,Z COS(EQFM(t))
=0
with
M a4 ATay, if =0
(20) Bure —
SM AT, if C=1,..., M.

m=~
For eachd = 1,..., M, the signalt — cos(¢0pn(t)) is the FM waveform
at carrier frequency f. generated by the signal — ¢m(t). According to the
generalized Carson’s rule, for all practical intent, we can view this signal as a
bandpass signal whose (transmission) bandwigjtts given by

Bg = 2(W + Dg) with Dg ={D
since

Dy = sup(kp[fm(t)|, t € R)
(21) = (sup (kp|m(t)|, t € R) ={D.

Under the appropriate conditions each of the components cos(¢0g(t))
can be extracted fromp(sgy) by means of bandpass filtering. For instance, to
recoversgy from ¢(spy) We pass the latter through a bandpass filter centered at
f. with bandwidthB; such that
By

B,
et = <2fe— —.
Jet g =2em 5
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This is equivalent to
fe+(W+D)<2f.— (W+2D),
and requires that the condition
2W 4+ 3D < f,

holds.
Similar arguments can be given for extracting> cos(fg\(t)) by means of
bandpass filtering.

Generating FM signals

Indirect method of Armstrong We seek to generate the FM sigral; : R —
R associated with the information-bearing signalsay

SFM (t) = AC Ccos (OFM (t)) , te R
with .
Opm(t) = 2 fot + 27rk:F/ m(r)dr, teR
0
for some giverkr > 0. We are in the situation when the condition (7) fails to hold
for the choice ofkr so thatsyg_ry IS NOt @ good approximation to the desired
FM signalsgy;.

We begin by writingkr = Mk}, for some positive integet/, so that the
condition (7) now holds fok7., namely

/0 tm(r)dr

Under this condition the FM signal,, : R — R given by

21k <1, teR.

t
spyv = A cos (27rfct + 2#/@}/ m(s)ds) , teR
0

can be well aprroximated by the narrow-band FM sigi@l ,; : R — R defined
by

sip-rm(t) = Accos(2mfct)

(22) — A.sin (27 f.t) (27rk:}7 /t m(r)dr) , tekR
0
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Next, the narrow-band FM signa{;_y,; : R — R is converted to the desired
wide-band FM signal as follows: Consider a non-linear deviceR — R of the
form

M
o(r) = Z amx™, x€R
m=1

with a,; # 0.
For each in R, with

t
O () = 21 fot + 27T/£}/ m(r)dr,
0

we note from (19)-(20) that

(23) P(sia(t)) = D B cos(hiy (1))

=0

with the coefficients as given by (20).

By the same arguments as given earlier in the discussion of immunity of angle
modulation to non-linearities, we can extract the signab cos(M65,(t)) by
feeding the signal — ¢(siy(t)) through a bandpass filter with center frequency
N f. and bandwidthB}, given by

By, =2(W + Dy)
where for eaclf = 1,2, ..., we have
D; = sup(kj|tm(t)], t €R)
= Csup (ki |m(t)], t € R)

l
= 75U (kp|m(t)], t € R).

1
24 = —-D.
(24) M
As aresult,
By, =2(W + Dy,) =2(W + D)

as should be expected!
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Direct method Using a voltage-controlled oscillator (VCO)

Demodulation of FM signals
The FM waveform is given by

SFM(t) = AC COS (QFM(t)) s teR
with .
Opm(t) = 2w fot + 27Tl<:F/ m(r)dr, teR.
0

Assuming sufficient differentiability fom, we note that

Gorn(t) = e (00(0)) -sin O (1)
= —A,2nfo+ 2rkpm(t)) - sin (fpu(t))
(25) = =2mA.(fe +krm(l)) - sin (Oem(t)), teR.

This calculation highlights the fact that differentiating an FM waveform produces
a signal that combines both amplitude and angle modulation. It raises the possi-
bility of using an envelope detector to extract the information bearing signal
This will be possible if

fotkpm(t) >0, teR

This occurs when
D < f.

The analysis just given is predicated on the amplitude of the FM waveform re-
maining constant over time. In practice, this condition is not expected to hold.
In fact in a number of situations, amplitude distortion can be significant and it is
appropriate to model the received sigsal; rec : R — R to be of the form

(26) SFM,Rec(t) = A(t) CcOos (QFM(t)) , teR

for someA : R — R with
(27) A(t) >0, teR.

Under (26)-(27) the earlier procedure of differentiating the incoming signal
and passing the result through an envelope detector will not work anymore: In-
deed, assuming enough differentiability, we now have

d

%SFM,Rec (t)
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= —A(t) (CZGFM( )) -sin (Apui(t)) + (%A(t)) - cos (Orm (1))

(28) = —27TA(t) (fc + l{:Fm(t)) - sin (QFI\/I<t)) + <%A(t)) + COS (QFM(t)) .

The approach based on envelope detection used when the amplitude remained
constant will not work here due to the presence oftthknownandtime-varying
term

<%A(t)> ~cos (Opm(t)), teER.

We can remedy to this difficulty by preprocessing re. With the aim of
extracting the original waveformg,;. One possible way to achieve this goal is

presented next.
Consider the hard-limitep : R — R given by

-1 if <0
(29) P(z)=¢ 0 if 2=0
1 if x>0

For each in R, as we recall that(¢) > 0, we note that

U(t) = (I)(SFM Rec(t))
= O(A(t) cos (Orm(t)))
(30) = ®(cos (frm(?)))-
Next, observe that the mappifg — ®(cosf) is a periodic function with

period2r — In fact, this function is just the periodic square wave function and
therefore admits a Fourier series respresentation, say

(31) ®(cos ) Z e’ heR

with

1 s
2
After some straightforward calculations (see below) we conclude that

(-1
(Z 2€+1cos((2€+1)9)> , BeR.

=0

= ®(cosf)e*d, k=0,+1,...

O (cosh) =

CHIS
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As aresult,
v(t) = ®(cos (Orm(t)))
(32) _ 4 (Z D s (20 + 1)9FM(t))) |

T\ 4= 20+ 1
Again, as was the case in the discussion of demodulation of FM signals, we note
that for eactY = 0,1, .. ., the signalt — cos ((2¢ + 1)0rm(t)) is the FM wave-
form at carrier frequency2/ + 1) f. generated by the signal— (2¢ + 1)m(t).
According to the generalized Carson’s rule, we can view this signal as a band-
pass signal with bandwidtB,,.; If we pass the signal through a banpass fil-
ter with center frequency. and bandwidti2IW + 2D we will collect the signal
t — 2Lcos (Bru(t)), as required. The earlier procedure outlined earlier, namely
feeding into a differentiator followed by an envelope detector, can now be used on
this resulting waveform.
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Properties of Bessel functions

0. Foreachk = 0,£1,... and every3 in R, J(/3) is an element oR.

Proof. Fix k =0,+1,...andg in R. Note that

L [™ s *
Je(B)" = <% / eﬂ‘ﬂmk@dm)

o 1 efj(ﬁsin:rszx)dx

2r ) .

_ i/ﬂ ej(—ﬁsin:r}—‘rkx)dx

2 ) .

_ ! /7r i (Bsin(—z)—k(~2)) g,

2r ),

1 .
_ ej(ﬂsmy—ky)dy

2 ) .

(33) = Ji(B).
HenceJ,(5)* = Jx(B), andJi (/) is an element oR. [

1. Foreacht =0,1,..., we have

Jk(8) = (1) J(B), BeR.

Proof. Fixk =0,1,...andg in R. Using the change of variable= = — x we
find

1 T
Ja(B) = o | Uy
™ —T
_ L [T csinenkrn)g,
2 ).
1 (™ pama .
— (_/ ol (Bsiny y))dy)_ejkﬂ
2 J_.
(34) = (=1)"J(B)

sincee’*™ = (—1)F, |
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2. Foreacht =0,1,..., we have

Ju(=B) = (=D)"J(3), B>0.

Proof. Fixk =0,1,...ands > 0. We note that

1 [~ . .
Jk(—ﬁ) _ o 77rej(—ﬂsmy—ky)dy
L
2 ),
_ i/ﬂ— ej(ﬁsinac—i—k;r)dx
2 ),
(35) = J_(B)
and the conclusion follows by Fatt
3. We have
Jo(B) =1+0(B) (8—0).
Proof. Fix #in R. From the definitions we see that
1 " i3 sin x
SB) -1 = B (e —1) dar
1 s Bsinx )
(36) = — ( / jeﬂdt) dx
27 —m 0
so that
1 g Bsinx -
B -1 < o /0 jertdt| da
1 T |3 sin x| )
< — / ‘je]t‘dt dx
27 - 0
< = [ |3lisinaa
= o) sin x|dx
(37) < |

17
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and the conclusion follows. [ |

4. We have

K= S0 +01) (3-0)

5.Foreacly =0.1,... we have

ﬁé
Je(B) = gz (1 +0(1)) (6 0).
6. For eachs in R, we have
Ze\Je(ﬁ)!Q =1

Proof. For each3 in R, the functionz — /%% is periodic with perio®r and
therefore admits a Fourier series representation. It is a simple matter to see that

jsinx __ jlx
e = Zgjk(ﬁ)e
and by Parseval’'s Theorem we get
1 [ ..
i Bsinx |2 _ 2
2 | |7 Pdr =3 IO
The conclusion follows from the fact that

effsne2 — 1 1 € R.
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On powers ofcos 6

Given isé in R. We are interested in understanding how to compute
(cos®)™, m=1,2,...
We shall repeatedly use the trigonometric identity
2cosacos f = cos(a + ) + cos(a — )

for arbitrarya andj in R.
Form = 2, we have

o cos(20) +1

(38) (cos0) 5
Next, withm = 3,
1
(cosf)® = % - cos 6
~ cos(26) cosf + cos 0
B 2
B cos(39;+c059 + cosf
B 2
_ cos(30) + 3cosd
(39) - ]

Building on the pattern emerging from these calculations we now set out to
prove the following fact.

Lemma 0.1 Given inRR, foreachm = 1,2, ..., there exist scalars a,, o, . . . , G m,
independent of 0, such that

m

(40) (cosO)™ = Z Ak cOS(KB).
k=0

Proof. The proof proceeds by induction. The conclusion (40) is truerfoe 1
(W|th apop = 0 andam = 1), form =2 (W|th g = %, 21 = 0 andag.g = %)
and form = 3 (with a3 o = 0, as1 = 2, a3» = 0 andas 3 = 1).
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Now assume (40) to hold for some > 2. We note that

(cos )™ = (cos®)™ - cosf
= (Z Uk cos(k;@)) - cost
k=0

= Qppcosb + Z 1, cOS(KO) cos 0

k=1

m
= am,06089+§ Qo

cos((k +1)0) + cos((k — 1)0)

2
k=1

m

20

1 < 1
= Qpypcosb + 5 Z A cOs((k +1)0) + 5 Z A 1 cos((k —1)0)

k=1 k=1
m+1 1 m—1
= Qpocost + 3 Z A —1 cos(kB) + 5
k=2 k=0
m+1
(41) - Z Am+41,k COS(/{}@)
k=0
with o .
2’ |f k == O
Um0 + 5= if k=1
Am+1,k = % (am,kfl + am,k+1) if k=2,....m—1
gt if k=m
[ 75" if k=m+1

by direct inspection. This completes the proof of Lemma 0.1.

A 1 cOS(KB)
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Computing the Fourier coefficients for ®(cos 0)
Recall that

_ Lt/
27 r
with ¢ as defined at (29). Thus,

Ch d(cosO)e*dh, k=0=+1,...

/ ®(cos e *dp,

= - / Mg / T iy / "o g

_ /2 e—jké)dg_/ (70 4 %) g

s s
2 2

N

Bl

= _—jk—z/ cos(ko)do

™

sin(km) — sin (kg))
2
(42) = —sin (kg) .

It is plain that
(1) if k=20+1

0 if k=20
with ¢ = 0, &1, . . ..




