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COMMUNICATIONS SYSTEMS

QUANTIZATION

Throughout, letX stand for a scalar rv taking values in the interval=
(A, B] for some finite scalard < B. We denote by its probability distribution
function, so that

PX <z]=F(z), ze€R.

We shall assume thdt admits a probability density functiofy so that

0 if <A
F(z)=¢ [i{f(t)dt if A<z<B

1 if B < x.

Quantizers

A quantizer @ with M levels for the interval A, B] (or interchangeably, for
any rv X distributed on the intervdlA, B]) is characterized by a collection 6f
contiguous sub-intervals ocells partioning(A, B], sayly, ..., Iy, and a collec-
tion of representation levelsq, . . ., qar, ONe to represent each of the intervals. The
partitioning constraints amounts to

Ly = (A, Bp], m=1,...M

with the notation

A1:A7
Am+1:Bm7 mzl,,M—L
By = B.

We also require
qm € L, m=1,..., M.
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Often we shall denote such a quantizeby

QE(]lv"'le;q17"'7QM)'

At times it will also be convenient to think of this quantizas amapping
Q@ : I — I given by

Qz)=qn fzxel, m=1,...,M.

Uniform quantizers

A quantizer is said to beniformon the interval A, B] if its cells all have the
same lengths and the representatives egeidistant. This uniquely determines
the quantize* = (I}, ..., Iy ¢}, ..., qY,), hereafter referred to as tieiform
quantizer for the interval( A, B], with

Bl — A =By — Ay =...= By, — Ay,
and Av 4 B
qzl:imQ LC =1,..., M.

Indeed, each interval must have Ien%f—‘ with

A%:A%—(m—l)-BT_A, m=1,...,M
and B_ A
B,“n:A—l—m-#, m=1,....M
so that
w  A'm+ By 2m—-1 B—-A B
q,, = 5 _A 5 Vi s m—l, ..,M

Measuring distortion

If X isthe variable to be quantized, then tuantization error or quantization
noise under the quantizep is given by

£(@; X) == QX) - X.
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With the quantizer) we associate théistortion measure

(1) O(Q; F) :=E [|e(Q; X)|?]

as a way to assess how well the quantized ver§igk ) of X approximatesy.
We define thesignal-to-quantization-noise ratio (SQNR) associated with the
guantizer as the ratio

E[X?]
E [le(@; X)[2]

In selecting a quantizer for the ?¥ it should be intuitively clear that a large value
for SQNR(Q; X) is desirable.

SQNR(Q; X) =

The quantization problem

Fix some positive integel/ > 2. Given the rvX distributed over the interval
I, we are interested in minimizing the distortion measureoidgr all possible
guantizers withV/ levels for the interval .

For any such quantiz&p = (Il, o DLy qi, ... qu), we note that

(Q; F) [le(Q: X))

=/|e@x|f
- / Q) — af*f(x)da

= 3 [0t ot o
@) - Z/Bm n — 22 f(@)da

Thus, with quantize€) characterized by cellg, . . ., I, and representation levels
qi, - - -, qu, We shall write

(P(Q;F) = (I)F(Ila---aIM§QI7---7QM>

with

3) Or(ly,. s I qus - -5 qur) Z/ m — |’ f(x)dx
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GivencellsIy, ..., Iy

We start with contiguous cellg, . . ., I, partitioning/, and focus on the fol-
lowing minimization problem: Find the representation levg, . . ., ¢y, Which
minimize

Qp(Ly, ..., i qus -5 qum)

under the constraints
Gm € I,, m=1,..., M.

The expression (3) isgparablein the variableg, . . ., ¢y, and the constraints
on them. As a result, the original minimization problem carsblved by solving
each of the following\/ sub-problems. Indeed,

M Bm
min m — x| f(2)dx, ¢ € Iy, m=1,.... M
CQ/ G — 22 £ (@), g € Ly m=1,..., )

M Bm
4) = Z min (/ |G — z)* f(2)dz, qm € Im) :
m=1 m
With this in mind, fixm =1, ..., M. We now seek to minimize

/Tmmﬂwﬂwm

under the constraint
Gm € L.

The solution is straightforward: We note that

B’UL
/ (g — 2 f(2)da
Am

B

(5) = ¢ " f(x)dx — 2q,, /Bm xf(x)dx + /Bm 22 f(x)dx.

A Ap, Am

This quadratic form in the variablg, is minimized atg, given by

. ff: rf(x)dx

qm - m .
fiﬂ f(z)dz
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This can be seen by a completion-of-square argument, okinygtéhe derivative
with respect the variablg,, and setting it equal to zero: Thus,

1 d [ [P ,
-2 — d
S ( / N :c)

Bm B,
= qnm (z)dx — / zf(x)dx
6) —o
and the value fog;, follows. It is easy to see that
Am < ¢, < B

and the candidate solutigj, obtained by unconstrained minimization is an ele-
ment of/,,,, as required.
Thus,

Bm B
i ( [ = 2@ qmefm)z [l ol @y

A m

Given representation levelsy, . .., qu

This time we are giverd/ distinct representation levels ih sayA < ¢; <
... < qu < B, and we focus on the following minimization problem: Fine th
cellsly, ..., Iy; which minimize

Qp(Ly, ..., i qus- -5 qu)

under the constraints
LU...Uly = (A, B]

and
Gm € I,, m=1,..., M.

In contrast with the problem discussed in the previous segcthis minimiza-
tion problem is no more separable. However, a careful ingpeof the expression
(3) suggests that the intervals

* kzl,,M
Im:{xE(A,B]|x—Qm|2§|!E—Qk|27 k‘#m }7 m:]-v"'vM
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constitute the solutioh Before giving a proof of this assertion, it is worth pointing
out that for distinct andm, the inequality

(7) |z — gn|? < |z — g
occurs if and only if

(Qm - QZ)(ZT - (QZ + Qm)) 2 0.

Thus, ifg,, < q. (resp.q; < g,»), then (7) holds provided < ‘Z"TW Similarly, if
qr < qm, then (7) holds provided > qT*‘” A moment of reflection shows that
the setd;, ..., I* are indeedntervals, say of the form

I = (A B5], m=1,...

with
Gm—1 + dm
2 )
To establish the optimality of the intervals, . . ., I},, we proceed as follows:
Recall that for any functioy : I — R, the linearity of the intergral operation

gives
/ x)dr = Z /
I

for any partition/y, ..., I,, of the mterval]. Now, from the definition of the
interval I, we get

A =B = m=2,...,M

|z — qm|* = k_r{linM lz —q|>, wel

=1,..

foreachm = 1,..., M. Therefore,

‘PF (L, s qr, - qm) — o Dhnan - qu)

— /|:L'—qm|f )dz — /Ix—qm|f z)dz

The boundary points
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-----

M B
= Z/j |x—qm|2f(x)dx—/A (k_r{linM|x—qk|2) f(z)dx
m=1 m

.....

.....

@ =

An iterative process

The developments of the two previous sections suggegtative approach
to solving the quantization problem.

We start with a quantizep = (11, ..., Iy;q1, - - ., qu). Fixing the intervals
1, ..., In, We replacey, . . ., gy by the midpointsgy, . . ., ga; Of these intervals.

The uniform case

The rv X is uniformly distributed or if its probability density functiory is
given by
0 if <A

fl@)=% 5 if A<z <B

0 if B <.

In that case, for eacthn = 1, ..., M, we get
Bm
., oade

Bm 1
Am zadw

ff; zdx

L) da
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B2 — A2
2(Bn, — Ap)
A, + B,
©) o
andg?, is the mid-point of the interval,,, .

A classical calculation of the signal-to-quantization-nese ratio

Consider the uniform quantizer: = (13, ..., IY; 4%, ..., qY,). Foreachn =
1,..., M, whenever lies in the intervall, we have

Q%) =QUa) —r =gl —a
andq! being the midpoint of the intervd}" , it follows that

B—-A
2M
As aresult, the nX — Q*(X) takes values in the symmetric interval

J___B—AB—A
T oM 7 2M

|z — qp| <

It is easy to see that if the densifyis sufficiently smooth and/ is sufficiently

large? then the probability distribution of the ¥ — Q*(X) is well approximated
by the uniform distribution on the intervdl Thus,

E[l(Q% X)) = / P e (D)

-5
o5 12
([%f%fﬁ
M 7 o
- B—A {ﬂ_%%
oM B—A\*
1 _ .
(10) 3(B—A) (2M’)

2As the calculations given at the end of the writeup show,dlesditions have to be read to
saying that the staircase approximatiorf@nchored at the point/$+mB—A*4A, m=20,1,...,M—
1is indeed a (reasonably) good approximatiotf of

12
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so that ,
— A
B [le@ 0P = 55 (557 ) -
Finally,
" E [X?]
PUREEY) = Rleer
(11) ~ mé%%%ww.

Companding — Non-uniform quantizers through composition

With A < B, define the interval = (A, B]. Assume given a continuous
mapping® : I — I which isstrictly monotone increasing with

A=®(A) and B=d(B).

Thus, ® puts the intervald and I into one-to-one correspondence. The case of
interest is wherb is non-linear.

_ Let X denote a rv with a non-uniform distribution on the interval With

X := ®(X), the rv X is distributed on the interval. We shall quantize its
samples by means of the uniform quantizer for the intefyamely

QU= ... Iy 4 - dyy)

with B o
I =(As.Brl, m=1,....M

and representation levels
gy, m=1,...,M

This uniform quantize@“, through the intermediary ob, produces anon-
uniform quantizerQ for X by setting

Oz) = o (@"@(x))) . zel

This procedure is known asompanding, an abbreviation focompressing fol-
lowed by exanding.
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It is easy to check that this procedure indeed defines a qeaudi for the
interval I with cells 1, ..., I, and representation levejs, . . ., ¢); given by

Ly :=® Y1), m=1,...,M

and
=dg"), m=1,...,M.

The intervall,, is of the form(Am, B,,,] with endpoints
“HA*) and B, = &1 (BY).

In short,
Q) =d ¢, w€l, m=1,..., M

The function® is selected so as to capture key features of the distribafian
e.g., its skewness. This is done by trial and error, by usimgtions that belong
to well structured classes of functions. This approachategithe need to solve
the quantization problem, usually a difficult task, eitheectly or through the
iterative procedure outlined earlier. While companding/mild a sub-optimal
guantizer (with respect to the mean-square distortionimesed earlier), its ro-
bustness and ease of implementation are traded for acéepttiormance.

The i and A-laws

In practice the interval = (A, B] is symmetric with respect to the origin with
A = —Bfor B > 0, the intervall coincides with/ and the compressor is add
monotone increasing and continuous function/ — I with

O(—a) = —B(z), |2] < B

and
®(+B) = +B.

Companding has been deployed in telephone networks as fptre @CM
format. Two standards have emerged: Thkaw is used in the U.S, Canada and
Japan, while thed-law has been adopted in Europe. They are briefly discussed
below.

With 1, > 0, the p-law corresponds to the mappidy, : [-B, B] — [—B, B]
given by

In (1 +,u|m|>

(12) P, (z) = (it

-sgn(z), x| < B
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Foru = 0, we find®,(z) = x on the interval— B, B] and companding reduces
to uniform quantization oi.

With A > 1, the A-law is defined through the mappingy, : [-B, B] —
[— B, B] given by
(13) Dy(z) = n(4l2)

1+In B .

with A > 1. The valued = 1yields®,(z) = x on the interval— B, B], in which
case companding reduces to uniform quantizatiorh.on

Approximating the probability density function of the quantizatio noise un-
der a uniform quantizer

Pickt in the interval/J. By standard probabilistic arguments,
Ple(Q“X) <t] = ZIP’XEI“ Q" X) <t
= ZIP’[X et QX)X <t
= ) PIXellq—X<t
= ) PIXell g —t<X]

= Y PlA}, <X < B gl —t<X]

M

= ) Plgn—t< X < B
m=1
M BY,

14) - > [

m=1" qm

as we have used the fact thgf is the midpoint betweed® and B} (which are
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themselves’=2 apart of each other), so that
Ay <gq,—t, teld

If the probability density functiory of X is sufficiently smooth and/ is
sufficiently large, then the approximation

flz)~ flqgr), xzel* m=1,....M

is likely to hold since each of the interval, . . ., I}, is small. Reporting this fact
into the result of the earlier calculations we get

M BY,
PE@iX) < = > [ fays
m=1"Yam—1t
M BY,
~ flq,,)d
mZ:l/q%_t (q,)da
M
= ) flgh) (Br — (g — 1))
m=1
Y (B-A
(15) = mz::lf(qm) < 7 +t)
since
B—-A
(16) =
Therefore,

Ple(Q" X) <t] ~

(17)

12
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The last step leading to (17) relies on the approximationment used earlier but
in the following reversed way: We see that

M

VAL oY ICATE

12
i\
~
—~
Na¥
U
8

= f(z)dz
(18) =1

as we recall that a probability density function integratesnity.
It is now straightforward to see that (17) is the probabdiistribution function
of a rv which is uniformly distributed od.

SQNR under companding

Let @ denote the non-uniform quantizer obtained by compandiraugh the
compressof : (A, B] — (A, B].

E[@x)?] = 3 / (Q(x) — 2)*f(2)dz

12
NE
—
=
S
T
=
3
I
8
s
QU
8

m];l

(19) = > flgm)
m=1

since
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<Qm - Am)3 <Qm - Bm)g

3 3

(20) =

Fixm =1,..., M. By construction, we have

By, — Ay, = @(By) - oA}

(21) = / Q' (z)dx
Im
under weak differentiability assumptions. Now note that
DU Au E B Z
B = Am =31
while
(22) / B(2)dr ~ (By— An)® (gn)
-[rn

Comparing we see that

so that




