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ENEE 420
FALL 2007

COMMUNICATIONSSYSTEMS
SAMPLING

In these notes we discuss the sampling process and prapeftseme of its
mathematical description. This culminates in the celadar&hannon-Nyquist
Sampling Theorem.

Rectangular pulses

With 7 > 0, the rectangular pulge : R — R is defined by

1ifo<t<r
p-(t) =

0 otherwise.

Fourier analysisof rectangular pulses

For eachf # 0 in R, straightforward calculations show

PAf) = [ ol

— /T e—j27rftdt
0

e—j27rf7' -1
) _ sin(mf) it
mf
while
P(f)=7 f=0
Therefore, .
ST emamdT i f £ 0
(2 P.(f) =
T if f=0.
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From now on, the parametersand T, are selected so that< r < Ty, and
we write f, = %

Throughout, we use the notatidn, to denote the summation, _,,, over
all integers. o

Train of rectangular pulses

The train of pulses associated wjthis the signat. : R — R given by

cr(t) = kaT(t —kT), teR.

The signak. being periodic with period’, it admits a Fourier series representa-
tion, namely

_ J2mk fst
cr(t) = E kozT(k;)e , teR
with Fourier coefficients given by

I :
a-(k) = T/ pr(t)e 2t gy
s Jo

= Lot k—0,+1,42

T
By virtue of (2) we find
sin(mk fs7) —jmkfeT _

T%Tfs'e JmkfsTif k= 41,42, ...
(3) o (k) =

= if k=0.

It is now plain that
¢ (1) ar(k)  onk

4 — . pleT fst7 te R.

Natural sampling

Letg : R — R denote an information-bearing signdlatural sampling gives
rise to the signagn.: - : R — R defined by

gNat,T<t) = CT(t)g(t) = kaT(t - kTs) : g(t), t € R
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Its Fourier transform is given by
Grar) = [ vl at

R

= /CT(t)g(t)e_jzwftdt
R

— /(ZkaT(k)eﬂ’rkfst) g(t)e_jzwftdt
R

— ZkaT / €j27rkfste—j27rftdt

= ZkaT / Ye2r(f=kfa)t gy

(5) = aT f kfs) f eR.

k

As a result, we also find

GNat,T(f) _ JNat, T —52n ft
f — /}R e I2mft gt
© - Zko‘;(’“ G(f ~kf), feR

| deal pulses

It may seem natural to model an instantaneous (or idealggatstimet = 0)
as a mapping (or function): R — R such that

0 if t£0
p(t){
1 if t=0.

Unfortunately, such a definition is not a useful one due tdahewing fact: From
the point of view of Fourier analysis, the functipns indistinguishable from the
identically zero function.

Instead, we model an ideal pulse by a Dirac funcionR — R. We draw
attention to the fact that although we present the péilas if it were a function
R — R, this is far from being the case! The terminology is an ace@ine and
we shall use it throughout.
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Formally, we can compute the Fourier transform of the Dirac funct®n a

(7) A&ﬂaﬁwﬁzL f eR.

Train of ideal pulses

In analogy with the notion of train of natural pulses, we casaziate with
ideal pulses the corresponding notion of pulse train. Wendeduch a train of
ideal pulses as the mapping: R — R given by

= chi(t —kT}), teR.
Again caution is in order: While the traify of ideal pulses may have been pre-
sented as if it were a mappiig — R, this is not so due to the (unresolved)
conceptional difficulties mentionned earlier. Yet, despite fact that such a train
of ideal pulses has only been vaguely defined (if at all), tlmson does serve a

useful purpose, albeit a formal one, as will become appdeotv.
Again proceedindormally, we compute the Fourier transform gfas

Cs(f) = /Rc(g(t)e_ﬂ”ftdt
:(é(}jgu—kﬂ»eﬁ%ﬂﬁ
- ELASQ—MQKﬂWﬁ

®) = Y e feR

I deal sampling

Letg : R — R denote an information-bearing signal. Ideal sampling poed
the signalgrge.; : R — R given by

Jueat(t) = c5(t)g t)

= ot
k

(9) = > 9T, t—kT) teR
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Its Fourier transform is therefore given by
GIdeal(f) = / gldeal(t)e_]gﬂftdt
R

— Zkg(k;Ts) / S(t — kTy)e %It qt

R
(10) - Zkg(k;Ts)e_jz”fkTs fER.

This expression turns out to be not too useful for our purpasstate of affairs
which prompts us to seek a different approach for evalualiadrourier transform
Glaeal- Although the expressions to be given are formal expresdmrthe Fourier
transform of an object which has not been fully defined, thélyturn out to be
useful for understanding the properties of the samplinggss.

From natural to ideal pulses

For eachr > 0, the normalized rectangular pulge: R — R is defined by

t T — —

T 0 otherwise.

Its Fourier transform is simply given by

sin(mf1) . e_jﬂfT

sin(rf7) it f£0
prfy =T

1 if f=0.

The convergence

lim P*(f) = lim B (f) =1, feR

710 710 T

and the expression (7) for the Fourier transform of a Diracfion together sug-
gest that the ideal pulgecan be thought of as the limit of the normalized puyise
asT goes to zero. Conversely, the normalized pytsevith smallr can be inter-

preted as a good approximation for the ideal puls@/e symbolically summarize
such a convergence as

(11) 1;{51297 =0
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We make no attempt at giving a precise meaning to the cormeeg@. 1). In fact,
a precise definition is certainly fraught with difficultiegme of which are already
apparent from the pointwise convergence

0 if t+£0
lim p(t) =

7i0 oo if t=0.

Resolving these difficulties is beyond the scope of thesesnot

From natural to ideal sampling

Let 7 go to zero: Since

sin(mk fs7)

—1
710 Tk fsT kA0
itis plain that
(k
lim P*(kf,) = lim & ) 4 k—o0,41.42,..
710 710 T

Therefore, formally we conclude that

. (1) . a- (k) ok ot
lim = lTl?Olzk—ej

70 T T
_ Z <lim ar(@) . J2mkfst
k \ 7]0 T
1 :

_ 727k fst

(12) = e
On the other hand, formally wielding (11) we find

e (t) ,

1 =1 “(t — KT,
im — ;{ng Py )

(13) = (), teR
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Combining we conclude that
_ 1 27k fst
Zké(t—kTs)—i;é , teR.

This (formal) relation often appears in the literature, @#&nown asPoisson’'s
summation formula.

From train of natural pulsesto train of ideal pulses

Next, we see that

Graeal(f) = 171%1 M
T oz (k)
- 1,}?01 kT : G(f - kfs)
(14) - %, (™) e -kn). ser
In short, )
(15) Guaeal (f) = TZkG(f —kfs), feR.

Recovering g from gt -

Assume the signa} : R — R to be band-limited with cut-off frequendy’,
ie.,
(16) G(f)=0, |f[>W.
The frequency
INyq = 2W
plays a particular role and is known as thyguist rate forg.

Under the condition (16) the translaté§f — kf,) andG(f — (fs) do not
“overlap” if k # ¢ whenever the condition

(17) 2W < fs

holds. More precisely, under (16) and (17), the translates— £ f;) andG(f —
(fs) with k& # ¢ cannot be simultaneously non-zero. As a result, in the espre
for the Fourier transform ofx.: -, namely

GNat,T(f) = Z aT(k) ' G(f - ka)? f € Ru

k
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at most one of the term&7(f — kfs), k = 0,11, 42, ..., is ever non-zero for a
given frequencyf under the condition (17).
With this in mind, consider a lowpass filtéf with cutoff frequencyi?,,, i.e.,

H(f) =0, [fl>Wh

If we selectll}, so that
(18) W<W, < fs =W,

then

H(f) - Grarf) = 3 arlk) - H(HG(F —~ kf.)
(19) = @ (OH(HG(f), feR

since for allk = +1, ..., we have

H(f)G(f—kf)=0, feR

In particular, if we take the lowpass filtéf to be
{ L if [f|< W,

0 otherwise,

H(f) =

then we obtain i

H(f)- Grat,r(f) = TG(f), feR.

Thus, the lowpass information-bearing signat R — R can be recovered fully
from gnas - DY linear processing.

The Shannon-Nyquist Sampling Theorem

We now show that not only camalso be recovered fromg..;, but that this
signal can be reconstructed from the samglgg7;), £ =0, £1,...}.

Here as well we assume the sigpalR — R to be band-limited with cut-off
frequencylV. Moreover, the condition (17) is enforced. From (15) we fgad

conclude that )

Gldoal(f) = TG(]C), |f‘ < |74

so that
G(f) = TSGIdeal(f)7 |f| S w
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Reporting this fact into (10) we conclude that
G(f)=T.)  gkT)e 7> |f < W

Since the signal is band-limited with cut-off frequencyV, this last relation
already shows that theamples should be sufficient to reconstruct the original
signalg! By Fourier inversion, we get

g(t) = /G(f)ejz’rftdt
RW ‘
= / G(f)e* tdt
-w
v }: 2m fkT, 2n f
_ —j2m s J2m ft
B /_W (TS kg(kTs)e >e at
v 2 f(t=kTs)
= J2m f(t—kTs
= TSE kg(k:TS) /_We dt

eI 2T (t—kTOW _ o=j2m(t—kT)W

j2m(t — kTy)

so that in (20t — KT)W)
sin (27 (t — kT,
(21) g(t) = Tszkg(kTs) . 7T(t — ]{JTS) 5

This expression is sometimes written in terms of the Nyquaits for the signa4,
namely

teR

sin (7(t — kT%) fnyq)

9(t) = Tszk9<kTs) ' m(t — kTy)
(22) = Tstyq . Zkg(kTs) - sinc ((t - kTs)fNyOI) ) teR
where we have defined
, _ sin (mt)
sinc(t) = — teR.

With fs = fxyq, We getT; fxyq = 1 and the last relation becomes
g(t) = Zkg(m) -sine ((t — ET%) fryq)
Zkg(m) -sinc (faygt — k), t€R.

(23)




