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ENEE 420
FALL 2007

COMMUNICATIONS SYSTEMS

SAMPLING

In these notes we discuss the sampling process and properties of some of its
mathematical description. This culminates in the celebrated Shannon-Nyquist
Sampling Theorem.

Rectangular pulses

With τ > 0, the rectangular pulsepτ : R → R is defined by

pτ (t) =







1 if 0 ≤ t ≤ τ

0 otherwise.

Fourier analysis of rectangular pulses

For eachf 6= 0 in R, straightforward calculations show

Pτ (f) =

∫

R

pτ (t)e
−j2πftdt

=

∫ τ

0

e−j2πftdt

=
e−j2πfτ − 1

−j2πf

=
sin(πfτ)

πf
· e−jπfτ(1)

while
Pτ (f) = τ, f = 0.

Therefore,

Pτ (f) =







sin(πfτ)
πf

· e−jπfτ if f 6= 0

τ if f = 0.
(2)
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From now on, the parametersτ andTs are selected so that0 < τ < Ts, and
we writefs = 1

Ts

.
Throughout, we use the notation

∑

k to denote the summation
∑

k=0,±1,... over
all integers.

Train of rectangular pulses

The train of pulses associated withpτ is the signalcτ : R → R given by

cτ (t) :=
∑

k
pτ (t − kTs), t ∈ R.

The signalcτ being periodic with periodTs, it admits a Fourier series representa-
tion, namely

cτ (t) =
∑

k
ατ (k)ej2πkfst, t ∈ R

with Fourier coefficients given by

ατ (k) =
1

Ts

∫ Ts

0

pτ (t)e
−j2πkfstdt

=
1

Ts

Pτ (kfs), k = 0,±1,±2, . . .

By virtue of (2) we find

ατ (k) =







1
Ts

sin(πkfsτ)
πkfs

· e−jπkfsτ if k = ±1,±2, . . .

τ
Ts

if k = 0.
(3)

It is now plain that

cτ (t)

τ
=

∑

k

ατ (k)

τ
· ej2πkfst, t ∈ R.(4)

Natural sampling

Let g : R → R denote an information-bearing signal.Natural sampling gives
rise to the signalgNat,τ : R → R defined by

gNat,τ (t) = cτ (t)g(t) =
∑

k
pτ (t − kTs) · g(t), t ∈ R.
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Its Fourier transform is given by

GNat,τ(f) =

∫

R

gNat,τ (t)e
−j2πftdt

=

∫

R

cτ (t)g(t)e−j2πftdt

=

∫

R

(

∑

k
ατ (k)ej2πkfst

)

g(t)e−j2πftdt

=
∑

k
ατ (k)

∫

R

g(t)ej2πkfste−j2πftdt

=
∑

k
ατ (k)

∫

R

g(t)e−j2π(f−kfs)tdt

=
∑

k
ατ (k)G(f − kfs), f ∈ R.(5)

As a result, we also find

GNat,τ (f)

τ
=

∫

R

gNat,τ(t)

τ
· e−j2πftdt

=
∑

k

ατ (k)

τ
· G(f − kfs), f ∈ R.(6)

Ideal pulses

It may seem natural to model an instantaneous (or ideal) pulse (at timet = 0)
as a mapping (or function)p : R → R such that

p(t) =







0 if t 6= 0

1 if t = 0.

Unfortunately, such a definition is not a useful one due to thefollowing fact: From
the point of view of Fourier analysis, the functionp is indistinguishable from the
identically zero function.

Instead, we model an ideal pulse by a Dirac functionδ : R → R. We draw
attention to the fact that although we present the pulseδ as if it were a function
R → R, this is far from being the case! The terminology is an accepted one and
we shall use it throughout.
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Formally, we can compute the Fourier transform of the Dirac function as
∫

R

δ(t)e−j2πftdt = 1, f ∈ R.(7)

Train of ideal pulses

In analogy with the notion of train of natural pulses, we can associate with
ideal pulses the corresponding notion of pulse train. We define such a train of
ideal pulses as the mappingcδ : R → R given by

cδ(t) =
∑

k
δ(t − kTs), t ∈ R.

Again caution is in order: While the traincδ of ideal pulses may have been pre-
sented as if it were a mappingR → R, this is not so due to the (unresolved)
conceptional difficulties mentionned earlier. Yet, despite the fact that such a train
of ideal pulses has only been vaguely defined (if at all), thisnotion does serve a
useful purpose, albeit a formal one, as will become apparentbelow.

Again proceedingformally, we compute the Fourier transform ofcδ as

Cδ(f) =

∫

R

cδ(t)e
−j2πftdt

=

∫

R

(

∑

k
δ(t − kTs)

)

e−j2πftdt

=
∑

k

∫

R

δ(t − kTs)e
−j2πftdt

=
∑

k
e−j2πfkTs, f ∈ R.(8)

Ideal sampling

Let g : R → R denote an information-bearing signal. Ideal sampling produces
the signalgIdeal : R → R given by

gIdeal(t) = cδ(t)g(t)

=
∑

k
δ(t − kTs)g(t)

=
∑

k
g(kTs)δ(t − kTs), t ∈ R.(9)
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Its Fourier transform is therefore given by

GIdeal(f) =

∫

R

gIdeal(t)e
−j2πftdt

=
∑

k
g(kTs)

∫

R

δ(t − kTs)e
−j2πftdt

=
∑

k
g(kTs)e

−j2πfkTs f ∈ R.(10)

This expression turns out to be not too useful for our purposes, a state of affairs
which prompts us to seek a different approach for evaluatingthe Fourier transform
GIdeal. Although the expressions to be given are formal expressions for the Fourier
transform of an object which has not been fully defined, they will turn out to be
useful for understanding the properties of the sampling process.

From natural to ideal pulses

For eachτ > 0, the normalized rectangular pulsep⋆
τ : R → R is defined by

p⋆
τ (t) :=

pτ (t)

τ
=







1
τ

if 0 ≤ t ≤ τ

0 otherwise.

Its Fourier transform is simply given by

P ⋆
τ (f) :=

Pτ (f)

τ
=







sin(πfτ)
πfτ

· e−jπfτ if f 6= 0

1 if f = 0.

The convergence

lim
τ↓0

P ⋆
τ (f) = lim

τ↓0

Pτ (f)

τ
= 1, f ∈ R

and the expression (7) for the Fourier transform of a Dirac function together sug-
gest that the ideal pulseδ can be thought of as the limit of the normalized pulsep⋆

τ

asτ goes to zero. Conversely, the normalized pulsep⋆
τ with smallτ can be inter-

preted as a good approximation for the ideal pulseδ. We symbolically summarize
such a convergence as

lim
τ↓0

p⋆
τ = δ.(11)



c©2008 by Armand M. Makowski 6

We make no attempt at giving a precise meaning to the convergence (11). In fact,
a precise definition is certainly fraught with difficulties,some of which are already
apparent from the pointwise convergence

lim
τ↓0

p⋆
τ (t) =







0 if t 6= 0

∞ if t = 0.

Resolving these difficulties is beyond the scope of these notes.

From natural to ideal sampling

Let τ go to zero: Since

lim
τ↓0

sin(πkfsτ)

πkfsτ
= 1, k 6= 0

it is plain that

lim
τ↓0

P ⋆
τ (kfs) = lim

τ↓0

ατ (k)

τ
= 1, k = 0,±1,±2, . . . .

Therefore, formally we conclude that

lim
τ↓0

cτ (t)

τ
= lim

τ↓0

∑

k

ατ (k)

τ
ej2πkfst

=
∑

k

(

lim
τ↓0

ατ (k)

τ

)

· ej2πkfst

=
1

Ts

∑

k
ej2πkfst.(12)

On the other hand, formally wielding (11) we find

lim
τ↓0

cτ (t)

τ
= lim

τ↓0

∑

k
p⋆

τ (t − kTs)

=
∑

k
lim
τ↓0

p⋆
τ (t − kTs)

=
∑

k
δ(t − kTs)

= cδ(t), t ∈ R.(13)
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Combining we conclude that
∑

k
δ(t − kTs) =

1

Ts

∑

k

ej2πkfst, t ∈ R.

This (formal) relation often appears in the literature, andis known asPoisson’s
summation formula.

From train of natural pulses to train of ideal pulses

Next, we see that

GIdeal(f) = lim
τ↓0

GNat,τ(f)

τ

= lim
τ↓0

∑

k

ατ (k)

τ
· G(f − kfs)

=
∑

k

(

lim
τ↓0

ατ (k)

τ

)

· G(f − kfs), f ∈ R.(14)

In short,

GIdeal(f) =
1

Ts

∑

k
G(f − kfs), f ∈ R.(15)

Recovering g from gNat,τ

Assume the signalg : R → R to be band-limited with cut-off frequencyW ,
i.e.,

G(f) = 0, |f | > W.(16)

The frequency
fNyq = 2W

plays a particular role and is known as theNyquist rate forg.
Under the condition (16) the translatesG(f − kfs) andG(f − ℓfs) do not

“overlap” if k 6= ℓ whenever the condition

2W < fs(17)

holds. More precisely, under (16) and (17), the translatesG(f − kfs) andG(f −
ℓfs) with k 6= ℓ cannot be simultaneously non-zero. As a result, in the expression
for the Fourier transform ofgNat,τ , namely

GNat,τ (f) =
∑

k
ατ (k) · G(f − kfs), f ∈ R,
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at most one of the termsG(f − kfs), k = 0,±1,±2, . . ., is ever non-zero for a
given frequencyf under the condition (17).

With this in mind, consider a lowpass filterH with cutoff frequencyWh, i.e.,

H(f) = 0, |f | > Wh.

If we selectWh so that
W < Wh < fs − W,(18)

then

H(f) · GNat,τ (f) =
∑

k
ατ (k) · H(f)G(f − kfs)

= ατ (0)H(f)G(f), f ∈ R(19)

since for allk = ±1, . . ., we have

H(f)G(f − kfs) = 0, f ∈ R.

In particular, if we take the lowpass filterH to be

H(f) =







1 if |f | ≤ Wh

0 otherwise,

then we obtain
H(f) · GNat,τ (f) =

τ

Ts

G(f), f ∈ R.

Thus, the lowpass information-bearing signalm : R → R can be recovered fully
from gNat,τ by linear processing.

The Shannon-Nyquist Sampling Theorem

We now show that not only cang also be recovered fromgIdeal, but that this
signal can be reconstructed from the samples{g(kTs), k = 0,±1, . . .}.

Here as well we assume the signalg : R → R to be band-limited with cut-off
frequencyW . Moreover, the condition (17) is enforced. From (15) we readily
conclude that

GIdeal(f) =
1

Ts

G(f), |f | ≤ W

so that
G(f) = TsGIdeal(f), |f | ≤ W
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Reporting this fact into (10) we conclude that

G(f) = Ts

∑

k
g(kTs)e

−j2πfkTs, |f | ≤ W

Since the signalg is band-limited with cut-off frequencyW , this last relation
already shows that thesamples should be sufficient to reconstruct the original
signalg! By Fourier inversion, we get

g(t) =

∫

R

G(f)ej2πftdt

=

∫ W

−W

G(f)ej2πftdt

=

∫ W

−W

(

Ts

∑

k
g(kTs)e

−j2πfkTs

)

ej2πftdt

= Ts

∑

k
g(kTs)

∫ W

−W

ej2πf(t−kTs)dt

= Ts

∑

k
g(kTs) ·

ej2π(t−kTs)W − e−j2π(t−kTs)W

j2π(t − kTs)
(20)

so that

g(t) = Ts

∑

k
g(kTs) ·

sin (2π(t − kTs)W )

π(t − kTs)
, t ∈ R.(21)

This expression is sometimes written in terms of the Nyquistrate for the signalg,
namely

g(t) = Ts

∑

k
g(kTs) ·

sin (π(t − kTs)fNyq)

π(t − kTs)

= TsfNyq ·
∑

k
g(kTs) · sinc ((t − kTs)fNyq) , t ∈ R(22)

where we have defined

sinc(t) =
sin (πt)

πt
, t ∈ R.

With fs = fNyq, we getTsfNyq = 1 and the last relation becomes

g(t) =
∑

k
g(kTs) · sinc ((t − kTs)fNyq)

=
∑

k
g(kTs) · sinc (fNyqt − k) , t ∈ R.(23)


