ENEE 420
FALL 2010
COMMUNICATIONS SYSTEMS
ANSWER KEY TO TEST \# 1:
1.

With scalar $a>0$, consider the signal $g_{a}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g_{a}(t):=\cos (2 \pi t)+\sin (2 \pi a t), \quad t \in \mathbb{R}
$$

1.a. For each $T>0$ we have

$$
\begin{align*}
& \int_{-T}^{T}\left|g_{a}(t)\right|^{2} d t \\
= & \int_{-T}^{T}|\cos (2 \pi t)+\sin (2 \pi a t)|^{2} d t \\
= & \int_{-T}^{T}\left(|\cos (2 \pi t)|^{2}+2 \cos (2 \pi t) \sin (2 \pi a t)+|\sin (2 \pi a t)|^{2}\right) d t \tag{1.1}
\end{align*}
$$

With the help of standard trigonometric identities, elementary calculations yield

$$
\begin{align*}
\int_{-T}^{T}|\cos (2 \pi t)|^{2} d t & =\frac{1}{2} \int_{-T}^{T}(1+\cos (4 \pi t)) d t \\
& =T+\frac{\sin (4 \pi T)}{4 \pi} \tag{1.2}
\end{align*}
$$

and

$$
\begin{align*}
\int_{-T}^{T}|\sin (2 \pi a t)|^{2} d t & =\frac{1}{2} \int_{-T}^{T}(1-\cos (4 \pi a t)) d t \\
& =T-\frac{\sin (4 \pi a T)}{4 \pi a} \tag{1.3}
\end{align*}
$$

while

$$
\int_{-T}^{T} \cos (2 \pi t) \sin (2 \pi a t) d t=0
$$

since the integrand has odd symmetry with respect to the origin. As a result we conclude that

$$
\mathcal{P}_{g_{a}}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|g_{a}(t)\right|^{2} d t=1
$$

1.b. It is assumed that the signal $g_{a}: \mathbb{R} \rightarrow \mathbb{R}$ gives rise to a Fourier series expansion of the form

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n a t}, \quad t \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

with Fourier coefficients $\left\{c_{n}, n=0, \pm 1, \ldots\right\}$. The signal g_{a} being defined on \mathbb{R}, the existence of its Fourier series (??) implies that g_{a} must be periodic with period

$$
T:=\frac{1}{a}
$$

But the signal $t \rightarrow \sin (2 \pi a t)$ being itself periodic with period T, it follows that the signal $t \rightarrow \cos (2 \pi t)$ must also be periodic with period T. However, the signal $t \rightarrow \cos (2 \pi t)$ is itself periodic with period 1 . These two requirements imply that $T=\ell$ for some integer $\ell=1,2, \ldots$, or equivalently

$$
a=\frac{1}{\ell}
$$

1.c. Under the condition $a=\frac{1}{\ell}$ for some $\ell=1, \ldots$, we get the following: If $\ell \neq 1$, then

$$
\begin{aligned}
g_{a}(t) & =\frac{e^{j 2 \pi t}+e^{-j 2 \pi t}}{2}+\frac{e^{j 2 \pi a t}-e^{-j 2 \pi a t}}{2 j} \\
& =\frac{e^{j 2 \pi \ell a t}+e^{-j 2 \pi \ell a t}}{2}+\frac{e^{j 2 \pi a t}-e^{-j 2 \pi a t}}{2 j}, \quad t \in \mathbb{R}
\end{aligned}
$$

so that

$$
c_{1}=\frac{1}{2 j}, c_{-1}=-\frac{1}{2 j} \quad \text { and } \quad c_{\ell}=c_{-\ell}=\frac{1}{2}
$$

with all other Fourier coefficients being zero. If $\ell=1$, then $a=1$ and we get

$$
c_{ \pm 1}=\frac{1}{2}\left(1 \pm \frac{1}{j}\right)
$$

with all other Fourier coefficients being zero. In either case we now conclude that

$$
\begin{align*}
\mathcal{P}_{g_{a}} & \left.=\frac{1}{T} \int_{0}^{\frac{1}{a}}\left|g_{a}(t)\right|^{2} d t \quad \text { [By periodicity }\right] \\
& =\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \quad[\text { By Parseval's Theorem for Fourier series }] \\
& = \begin{cases}\frac{1}{4}\left|1-\frac{1}{j}\right|^{2}+\frac{1}{4}\left|1+\frac{1}{j}\right|^{2} & \text { if } \ell=1 \\
2\left|\frac{1}{2 j}\right|^{2}+2\left|\frac{1}{2}\right|^{2} & \text { if } \ell \neq 1\end{cases} \\
& =1, \tag{1.5}
\end{align*}
$$

in agreement with the evaluation carried out in Part 1.a.
2.

For each $a>0$, consider the signal $h_{a}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
h_{a}(t)=e^{-a|t|}, \quad t \in \mathbb{R}
$$

2.a. By now you should know that

$$
H_{a}(f)=\frac{2 a}{a^{2}+(2 \pi f)^{2}}, \quad f \in \mathbb{R}
$$

and I look forward to seeing your calculations.
2.b. Note that $\lim _{a \downarrow 0} h_{a}(t)=1$ for each t in \mathbb{R} and it is easily verified that

$$
\lim _{a \downarrow 0} H_{a}(f)= \begin{cases}0 & \text { if } f \neq 0 \\ \infty & \text { if } f=0\end{cases}
$$

so that $\lim _{a \downarrow 0} H_{a}(f)$ can be viewed as a proxy for $\delta(f)$. Thus, we can construct a direct approximation argument on the way to establish the Fourier pairing $1 \Longleftrightarrow \delta(f)$, namely

3.

Consider the function $v:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{R}$ given by

$$
v(t)=|t|, \quad|t| \leq \frac{1}{2}
$$

3.a. Note that

$$
v_{k}=\int_{-\frac{1}{2}}^{\frac{1}{2}}|t| e^{-j 2 \pi k t} d t, \quad k=0, \pm 1, \pm 2, \ldots
$$

so that

$$
v_{-k}=v_{k}, \quad k=1,2, \ldots
$$

with

$$
v_{0}=\int_{-\frac{1}{2}}^{\frac{1}{2}}|t| d t=2 \int_{0}^{\frac{1}{2}} t d t=\frac{1}{4}
$$

Now for each $k=1,2, \ldots$, we have

$$
v_{k}=\int_{-\frac{1}{2}}^{\frac{1}{2}}|t| e^{-j 2 \pi k t} d t=a_{k}+b_{k}
$$

where

$$
a_{k}:=\int_{0}^{\frac{1}{2}}|t| e^{-j 2 \pi k t} d t=\int_{0}^{\frac{1}{2}} t e^{-j 2 \pi k t} d t
$$

and

$$
b_{k}:=\int_{-\frac{1}{2}}^{0}|t| e^{-j 2 \pi k t} d t=-\int_{-\frac{1}{2}}^{0} t e^{-j 2 \pi k t} d t .
$$

It is clear that

$$
\begin{aligned}
b_{k} & =-\int_{-\frac{1}{2}}^{0} t e^{-j 2 \pi k t} d t \\
& \left.=-\int_{\frac{1}{2}}^{0} s e^{j 2 \pi k s} d s \quad \text { [Change of variable } t=-s\right] \\
& =\int_{0}^{\frac{1}{2}} s e^{j 2 \pi k s} d s=a_{k}^{\star} .
\end{aligned}
$$

Integration by parts gives

$$
\begin{aligned}
a_{k} & =\int_{0}^{\frac{1}{2}} t e^{-j 2 \pi k t} d t \\
& =\int_{0}^{\frac{1}{2}} t\left(\frac{e^{-j 2 \pi k t}}{-j 2 \pi k}\right)^{\prime} d t \\
& =\left[t \cdot\left(\frac{e^{-j 2 \pi k t}}{-j 2 \pi k}\right)\right]_{0}^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}}\left(\frac{e^{-j 2 \pi k t}}{-j 2 \pi k}\right) d t \\
& =\frac{1}{2}\left(\frac{e^{-j \pi k}}{-j 2 \pi k}\right)-\left[\frac{e^{-j 2 \pi k t}}{(-j 2 \pi k)^{2}}\right]_{0}^{\frac{1}{2}} \\
& =\frac{1}{2}\left(\frac{e^{-j \pi k}}{-j 2 \pi k}\right)-\frac{e^{-j \pi k}-1}{(-j 2 \pi k)^{2}} \\
& =\frac{1}{2}\left(\frac{(-1)^{k}}{-j 2 \pi k}\right)-\frac{(-1)^{k}-1}{(-j 2 \pi k)^{2}} .
\end{aligned}
$$

It is now immediate that

$$
b_{k}=a_{k}^{\star}=\frac{1}{2}\left(\frac{(-1)^{k}}{j 2 \pi k}\right)-\frac{(-1)^{k}-1}{(-j 2 \pi k)^{2}}
$$

so that

$$
v_{k}=a_{k}+b_{k}=-2 \frac{(-1)^{k}-1}{(-j 2 \pi k)^{2}}=\frac{(-1)^{k}-1}{2(\pi k)^{2}}
$$

Finally, for each $k=1,2, \ldots$, we have

$$
v_{k}= \begin{cases}0 & \text { if } k \text { even } \\ -\frac{1}{(\pi k)^{2}} & \text { if } k \text { odd }\end{cases}
$$

Hence,

$$
\begin{align*}
v(t) & =\sum_{k=-\infty}^{\infty} v_{k} e^{j 2 \pi k t} \\
& =v_{0}+\sum_{k=1}^{\infty} v_{k}\left(e^{j 2 \pi k t}+e^{-j 2 \pi k t}\right) \\
& =\frac{1}{4}+2 \sum_{k=1}^{\infty} v_{k} \cos (2 \pi k t) \\
& =\frac{1}{4}+2 \sum_{\ell=0}^{\infty} v_{2 \ell+1} \cos (2 \pi(2 \ell+1) t) \\
& =\frac{1}{4}-2 \sum_{\ell=0}^{\infty} \frac{1}{(\pi(2 \ell+1))^{2}} \cos (2 \pi(2 \ell+1) t) \\
& =\frac{1}{4}-\frac{2}{\pi^{2}} \sum_{\ell=0}^{\infty} \frac{1}{(2 \ell+1)^{2}} \cos (2 \pi(2 \ell+1) t), \quad t \in \mathbb{R} \tag{1.6}
\end{align*}
$$

ENEE 420/FALL 2010
3.b. By Parseval's Theorem for Fourier series we know that

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}|t|^{2} d t=\sum_{k=-\infty}^{\infty}\left|v_{k}\right|^{2} .
$$

Noting that

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}|t|^{2} d t=\frac{1}{3} \int_{-\frac{1}{2}}^{\frac{1}{2}} 3 t^{2} d t=\frac{1}{3}\left(2\left(\frac{1}{2}\right)^{3}\right)=\frac{1}{12}
$$

we conclude that $I(v)=\frac{1}{2}$.
3.c. The calculations are straightforward: Note that

$$
\begin{align*}
\sum_{k=-\infty}^{\infty}\left|v_{k}\right|^{2} & =\left|v_{0}\right|^{2}+\sum_{k=-\infty}^{\infty}\left|v_{k}\right|^{2} \\
& =\frac{1}{16}+2 \sum_{k=1}^{\infty}\left|v_{k}\right|^{2} \\
& =\frac{1}{16}+2 \sum_{\ell=0}^{\infty}\left|v_{2 \ell+1}\right|^{2} \\
& =\frac{1}{16}+2 \sum_{\ell=0}^{\infty} \frac{1}{(\pi(2 \ell+1))^{4}} \\
& =\frac{1}{16}+\frac{2}{\pi^{4}} \sum_{\ell=0}^{\infty} \frac{1}{(2 \ell+1)^{4}} \tag{1.7}
\end{align*}
$$

and Part 3.b yields

$$
\frac{1}{12}=\frac{1}{16}+\frac{2}{\pi^{4}} \sum_{\ell=0}^{\infty} \frac{1}{(2 \ell+1)^{4}}
$$

Solving for π^{4} we get

$$
\pi^{4}=96 \cdot \sum_{\ell=0}^{\infty} \frac{1}{(2 \ell+1)^{4}}
$$

4.

It is high time to compute various integrals using the properties of the Fourier transform: With the function $h: \mathbb{R} \rightarrow \mathbb{R}$ being defined by

$$
h(t)= \begin{cases}1 & \text { if }|t| \leq 1 \\ 0 & \text { if }|t|>1\end{cases}
$$

we have

$$
h(t) \Longleftrightarrow H(f)
$$

with

$$
H(f)=2 \cdot \frac{\sin (2 \pi f)}{2 \pi f}, \quad f \in \mathbb{R}
$$

and by duality we conclude that

$$
H(-t) \Longleftrightarrow h(f)
$$

4.a. With this in mind, note that

$$
\begin{align*}
2 I & =\int_{\mathbb{R}}\left(\frac{\sin t}{t}\right)^{2} d t \\
& \left.=2 \pi \int_{\mathbb{R}}\left(\frac{\sin (2 \pi s)}{2 \pi s}\right)^{2} d s \quad \text { [Change of variable } t=2 \pi s\right] \\
& \left.=\frac{\pi}{2} \int_{\mathbb{R}}\left(2 \cdot \frac{\sin (2 \pi f)}{2 \pi f}\right)^{2} d f \quad \text { [Change of variable } s=f\right] \\
& =\frac{\pi}{2} \int_{\mathbb{R}}|H(f)|^{2} d f \\
& =\frac{\pi}{2} \int_{\mathbb{R}}|h(t)|^{2} d t \quad \text { [Parseval's Theorem for Fourier transforms] } \\
& =\frac{\pi}{2} \int_{-1}^{1} d t \\
& =\pi, \quad \text { hence } I=\frac{\pi}{2} . \tag{1.8}
\end{align*}
$$

4.b. Note that

$$
\begin{align*}
I(a) & =\int_{\mathbb{R}} e^{-a|t|} \cdot \frac{\sin t}{t} d t \\
& =2 \pi \int_{\mathbb{R}} e^{-2 \pi a|s|} \cdot \frac{\sin (2 \pi s)}{2 \pi s} d s \quad[\text { Change of variable } t=2 \pi s] \\
& =\pi \int_{\mathbb{R}} e^{-b|s|} \cdot\left(2 \frac{\sin (2 \pi s)}{2 \pi s}\right) d s \quad[\text { Set } b=2 \pi a] \\
& =\pi \int_{\mathbb{R}} e^{-b|s|} \cdot H(-s) d s \\
& =\pi \int_{\mathbb{R}} \frac{2 b}{b^{2}+(2 \pi f)^{2}} \cdot h(f) d f \quad \text { [By Parseval's Theorem for Fourier transforms] } \\
& =\pi \int_{-1}^{1} \frac{2 b}{b^{2}+(2 \pi f)^{2}} d f \\
& =\frac{2 \pi}{b} \int_{-1}^{1} \frac{1}{1+\left(\frac{2 \pi}{b} f\right)^{2}} d f \\
& =\frac{2 \pi a}{b} \int_{-a^{-1}}^{a^{-1}} \frac{1}{1+x^{2}} d x \quad\left[\text { Change of variable } x=\frac{2 \pi}{b} f=\frac{f}{a}\right] \\
& =2 \operatorname{Arctan}\left(a^{-1}\right) . \tag{1.9}
\end{align*}
$$

4.c. Note that

$$
\begin{align*}
J(a) & =\int_{0}^{\infty} e^{-a t} \cdot \frac{\sin t}{t} d t \\
& =\int_{0}^{\infty} e^{-a|t|} \cdot \frac{\sin t}{t} d t \\
& =\frac{1}{2} I(a) \tag{1.10}
\end{align*}
$$

since

$$
\int_{-\infty}^{0} e^{-a|t|} \cdot \frac{\sin t}{t} d t=\int_{0}^{\infty} e^{-a|t|} \cdot \frac{\sin t}{t} d t
$$

by symmetry, and the conclusion

$$
J(a)=\operatorname{Arctan}\left(a^{-1}\right)
$$

follows.

As stated in the hint to this question, there are many different ways to compute these integrals. In particular you should also be aware of the fact that if $g_{1}, g_{2}: \mathbb{R} \rightarrow \mathbb{C}$ are finite energy signals with Fourier transforms $G_{1}, G_{2}: \mathbb{R} \rightarrow \mathbb{C}$, then

$$
\begin{equation*}
\int_{\mathbb{R}} g_{1}(t) g_{2}(t) d t=\left(g_{1} \star g_{2}\right)(0) \tag{1.11}
\end{equation*}
$$

ENEE 420/FALL 2010
The signal $g_{1} \star g_{2}$ has a Fourier transform given by $G_{1} \cdot G_{2}$, and the inverse Fourier transform yields

$$
\left(g_{1} \star g_{2}\right)(t)=\int_{\mathbb{R}} G_{1}(f) \cdot G_{2}(f) e^{j 2 \pi f t} d f
$$

so that

$$
\int_{\mathbb{R}} g_{1}(t) g_{2}(t) d t=\left(g_{1} \star g_{2}\right)(0)=\int_{\mathbb{R}} G_{1}(f) \cdot G_{2}(f) d f .
$$

