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COMMUNICATIONS SYSTEMS

ANSWER KEY TO TEST # 1:

1.
With scalar a > 0, consider the signal ga : R → R given by

ga(t) := cos (2πt) + sin (2πat) , t ∈ R.

1.a. For each T > 0 we have∫ T

−T

|ga(t)|2dt

=

∫ T

−T

|cos (2πt) + sin (2πat)|2 dt

=

∫ T

−T

(
|cos (2πt)|2 + 2 cos (2πt) sin (2πat) + |sin (2πat)|2

)
dt. (1.1)

With the help of standard trigonometric identities, elementary calculations yield∫ T

−T

|cos (2πt)|2 dt =
1

2

∫ T

−T

(1 + cos (4πt)) dt

= T +
sin (4πT )

4π
(1.2)

and ∫ T

−T

|sin (2πat)|2 dt =
1

2

∫ T

−T

(1− cos (4πat)) dt

= T − sin (4πaT )

4πa
, (1.3)

while ∫ T

−T

cos (2πt) sin (2πat) dt = 0
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since the integrand has odd symmetry with respect to the origin. As a result we conclude
that

Pga = lim
T→∞

1

2T

∫ T

−T

|ga(t)|2dt = 1.

1.b. It is assumed that the signal ga : R → R gives rise to a Fourier series expansion of
the form ∑∞

n=−∞
cne

j2πnat, t ∈ R (1.4)

with Fourier coefficients {cn, n = 0,±1, . . .}. The signal ga being defined on R, the
existence of its Fourier series (??) implies that ga must be periodic with period

T :=
1

a
.

But the signal t → sin (2πat) being itself periodic with period T , it follows that the signal
t → cos (2πt) must also be periodic with period T . However, the signal t → cos (2πt) is
itself periodic with period 1. These two requirements imply that T = ` for some integer
` = 1, 2, . . ., or equivalently

a =
1

`
.

1.c. Under the condition a = 1
`

for some ` = 1, . . ., we get the following: If ` 6= 1, then

ga(t) =
ej2πt + e−j2πt

2
+

ej2πat − e−j2πat

2j

=
ej2π`at + e−j2π`at

2
+

ej2πat − e−j2πat

2j
, t ∈ R

so that

c1 =
1

2j
, c−1 = − 1

2j
and c` = c−` =

1

2

with all other Fourier coefficients being zero. If ` = 1, then a = 1 and we get

c±1 =
1

2

(
1± 1

j

)
with all other Fourier coefficients being zero. In either case we now conclude that

Pga =
1

T

∫ 1
a

0

|ga(t)|2dt [By periodicity]

=
∑∞

n=−∞
|cn|2 [By Parseval’s Theorem for Fourier series]

=


1
4

∣∣∣1− 1
j

∣∣∣2 + 1
4

∣∣∣1 + 1
j

∣∣∣2 if ` = 1

2
∣∣∣ 1
2j

∣∣∣2 + 2
∣∣1
2

∣∣2 if ` 6= 1

= 1, (1.5)

in agreement with the evaluation carried out in Part 1.a.
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2.
For each a > 0, consider the signal ha : R → R given by

ha(t) = e−a|t|, t ∈ R.

2.a. By now you should know that

Ha(f) =
2a

a2 + (2πf)2
, f ∈ R

and I look forward to seeing your calculations.

2.b. Note that lima↓0 ha(t) = 1 for each t in R and it is easily verified that

lim
a↓0

Ha(f) =


0 if f 6= 0

∞ if f = 0

so that lima↓0 Ha(f) can be viewed as a proxy for δ(f). Thus, we can construct a direct
approximation argument on the way to establish the Fourier pairing 1 ⇐⇒ δ(f), namely

ha(t) ⇐⇒ Ha(f)
↓ (a ↓ 0) ↓ (a ↓ 0)
1 ⇐⇒ δ(f)
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3.
Consider the function v : [−1

2
, 1

2
] → R given by

v(t) = |t|, |t| ≤ 1

2
.

3.a. Note that

vk =

∫ 1
2

− 1
2

|t|e−j2πktdt, k = 0,±1,±2, . . .

so that
v−k = vk, k = 1, 2, . . .

with

v0 =

∫ 1
2

− 1
2

|t|dt = 2

∫ 1
2

0

tdt =
1

4
.

Now for each k = 1, 2, . . ., we have

vk =

∫ 1
2

− 1
2

|t|e−j2πktdt = ak + bk

where

ak :=

∫ 1
2

0

|t|e−j2πktdt =

∫ 1
2

0

te−j2πktdt

and

bk :=

∫ 0

− 1
2

|t|e−j2πktdt = −
∫ 0

− 1
2

te−j2πktdt.

It is clear that

bk = −
∫ 0

− 1
2

te−j2πktdt

= −
∫ 0

1
2

sej2πksds [Change of variable t = −s]

=

∫ 1
2

0

sej2πksds = a?
k.
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Integration by parts gives

ak =

∫ 1
2

0

te−j2πktdt

=

∫ 1
2

0

t

(
e−j2πkt

−j2πk

)′
dt

=

[
t ·
(

e−j2πkt

−j2πk

)] 1
2

0

−
∫ 1

2

0

(
e−j2πkt

−j2πk

)
dt

=
1

2

(
e−jπk

−j2πk

)
−
[

e−j2πkt

(−j2πk)2

] 1
2

0

=
1

2

(
e−jπk

−j2πk

)
− e−jπk − 1

(−j2πk)2

=
1

2

(
(−1)k

−j2πk

)
− (−1)k − 1

(−j2πk)2
.

It is now immediate that

bk = a?
k =

1

2

(
(−1)k

j2πk

)
− (−1)k − 1

(−j2πk)2

so that

vk = ak + bk = −2
(−1)k − 1

(−j2πk)2
=

(−1)k − 1

2(πk)2
.

Finally, for each k = 1, 2, . . ., we have

vk =


0 if k even

− 1
(πk)2

if k odd.

Hence,

v(t) =
∞∑

k=−∞

vke
j2πkt

= v0 +
∞∑

k=1

vk

(
ej2πkt + e−j2πkt

)
=

1

4
+ 2

∞∑
k=1

vk cos (2πkt)

=
1

4
+ 2

∞∑
`=0

v2`+1 cos (2π(2` + 1)t)

=
1

4
− 2

∞∑
`=0

1

(π(2` + 1))2
cos (2π(2` + 1)t)

=
1

4
− 2

π2

∞∑
`=0

1

(2` + 1)2
cos (2π(2` + 1)t) , t ∈ R. (1.6)
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3.b. By Parseval’s Theorem for Fourier series we know that∫ 1
2

− 1
2

|t|2dt =
∑∞

k=−∞
|vk|2.

Noting that ∫ 1
2

− 1
2

|t|2dt =
1

3

∫ 1
2

− 1
2

3t2dt =
1

3

(
2

(
1

2

)3
)

=
1

12
,

we conclude that I(v) = 1
2
.

3.c. The calculations are straightforward: Note that

∞∑
k=−∞

|vk|2 = |v0|2 +
∞∑

k=−∞

|vk|2

=
1

16
+ 2

∞∑
k=1

|vk|2

=
1

16
+ 2

∞∑
`=0

|v2`+1|2

=
1

16
+ 2

∞∑
`=0

1

(π(2` + 1))4

=
1

16
+

2

π4

∞∑
`=0

1

(2` + 1)4
(1.7)

and Part 3.b yields
1

12
=

1

16
+

2

π4

∞∑
`=0

1

(2` + 1)4
.

Solving for π4 we get

π4 = 96 ·
∞∑

`=0

1

(2` + 1)4
.
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4.
It is high time to compute various integrals using the properties of the Fourier transform:
With the function h : R → R being defined by

h(t) =


1 if |t| ≤ 1

0 if |t| > 1,

we have
h(t) ⇐⇒ H(f)

with

H(f) = 2 · sin (2πf)

2πf
, f ∈ R,

and by duality we conclude that

H(−t) ⇐⇒ h(f).

4.a. With this in mind, note that

2I =

∫
R

(
sin t

t

)2

dt

= 2π

∫
R

(
sin (2πs)

2πs

)2

ds [Change of variable t = 2πs]

=
π

2

∫
R

(
2 · sin (2πf)

2πf

)2

df [Change of variable s = f ]

=
π

2

∫
R
|H(f)|2df

=
π

2

∫
R
|h(t)|2dt [Parseval’s Theorem for Fourier transforms]

=
π

2

∫ 1

−1

dt

= π, hence I = π
2
. (1.8)
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4.b. Note that

I(a) =

∫
R

e−a|t|.
sin t

t
dt

= 2π

∫
R

e−2πa|s|.
sin (2πs)

2πs
ds [Change of variable t = 2πs]

= π

∫
R

e−b|s|.

(
2
sin (2πs)

2πs

)
ds [Set b = 2πa]

= π

∫
R

e−b|s| ·H(−s)ds

= π

∫
R

2b

b2 + (2πf)2
· h(f)df [By Parseval’s Theorem for Fourier transforms]

= π

∫ 1

−1

2b

b2 + (2πf)2
df

=
2π

b

∫ 1

−1

1

1 + (2π
b
f)2

df

=
2πa

b

∫ a−1

−a−1

1

1 + x2
dx [Change of variable x = 2π

b
f = f

a
]

= 2Arctan
(
a−1
)
. (1.9)

4.c. Note that

J(a) =

∫ ∞

0

e−at.
sin t

t
dt

=

∫ ∞

0

e−a|t|.
sin t

t
dt

=
1

2
I(a) (1.10)

since ∫ 0

−∞
e−a|t|.

sin t

t
dt =

∫ ∞

0

e−a|t|.
sin t

t
dt

by symmetry, and the conclusion

J(a) = Arctan
(
a−1
)

follows.

As stated in the hint to this question, there are many different ways to compute these
integrals. In particular you should also be aware of the fact that if g1, g2 : R → C are
finite energy signals with Fourier transforms G1, G2 : R → C, then∫

R
g1(t)g2(t)dt = (g1 ? g2) (0) (1.11)
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The signal g1 ? g2 has a Fourier transform given by G1 · G2, and the inverse Fourier
transform yields

(g1 ? g2) (t) =

∫
R

G1(f) ·G2(f)ej2πftdf

so that ∫
R

g1(t)g2(t)dt = (g1 ? g2) (0) =

∫
R

G1(f) ·G2(f)df.


