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COMMUNICATIONS SYSTEMS

ANSWER KEY TO TEST # 2:

1.

l.a Fix ¢ in R. It is plain that

2(t) = P(yam(t))
= aA. (1 + kam(t)) cos (2r ft) + bA (1 + kam(t)) cos (2m f.t)°
= aA.(1+ kam(t))cos (2n f.t)

+ b%‘% (14 kam(t))® (1 + cos (47 f.t))

= aA.(1+ kam(t))cos (2nf.t)
+ b%g (1 + kam(t))’

+ b%g (14 2kam(t) + k3m(t)?) cos (47 f.t) . (1.1)

1.b First we feed the signal z : R — R through a low-pass filter with cut-off frequency

2B, namely
1 if |f| <2B

H(f) =
0 if |f| > 2B.

Recall that m is a low-pass signal cutoff frequency B, so that the signal m? is also a
low-pass signal but with cutoff frequency 2B. Therefore,
2

w(t) = (hx2)(t) = b (1+kam(t))?, teR

2
provided the conditions

2B< f.—B and 2B <2f.—2B

hold. This amounts to
3B < f..
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Next we use the square-rooter on w to obtain

b
V() = \/;Ac (1+ kam(t))
provided
1+ kam(t) >0, teR.

Finally a use a dc-blocker to extract kam.
Note that this approach has the advantage of avoiding multiplication by cos (27 f.t) in
order to achieve demodulation.

2.

2.a By standard properties of Fourier transforms we readily find

P(f) = aM(f)+§;%(M<f_§>+M(f+§))

ES (D)) v

2.b The required filter h : R — R needs to satisfy the requirement h x p = ypsg_sc, or
equivalently,

Ypsg-sc(f) = H(f)P(f), feR

in the frequency domain, with

Yosn-so(f) = 5 (M(F — f) + M(f + 1), feR

Upon comparing with the expression for P(f), we see that h can be selected as

L if[f - f|<B

H(f) =
0 if|f—f.|> B

provided the constraints

k
fC:T for some k =1,..., K such that a5 # 0 and b, =0

and 1
2B < —
T
hold.
2.c

Yes since the periodic carrier ¢ : R — R admits a Fourier representation provided
similar conditions as above hold. More precisely, with Fourier series expansion

c(t) = chkeﬂ”%t, teR
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we get
F(exm)(f) :chkM (f— ;) , fER

and the needed conditions for ypsg_sc = h *x p are now

k
fo= T for some k = 0,=£1,... such that a; # 0 and b, =0

and ]
2B < T
3.
3.a We have
(0 if0<f<f.—2
p(f—ft3) ffe-5<f<fet 3]
Hesell) = 1 if f+2<f<f.+B
0 if f.+B < f.
with

Hysp(—f) = Hyss(f), f>0.

From this expression for Hygp (or graphically), it is easy to check that

1 if|f|< B

Hysg(f — fo) + Hysg(f + fo) =
0 if|f|> B

and the requisite condition holds.
3.b The transmission bandwidth Br is given by

B
Br=B+4+ = =22,
r tTo T3

3.c By construction
YvsB = hvsB * Ypsp-sc

so that
Yvse(f) = Hyvse(f)Ypsp-sc(f), f€R
with
Vosa-sc(f) = 55 (M(f = £+ M(F + ). feR
Here, A
M) = 265 = f) 4607+ £), feER

(1.3)
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so that
YDSB—SC(f) - Acfm (5(f - fc - fm) + 5(f - fc + fm))
F B G fo ) O St S (1L4)

It is now plain that

Yvss(f)
= HVSB(f)YDSB—SC(f)
_ Acfm (Hvss(fo + )6 (f = o — fu) + Hvsp(fo — f)0(f = £+ f))
A (ot Fa)OU 4 Fo— f) + Hysn(—fo = B0 + o+ fu)

4
When % < ¢ < 1, we note that

HVSB(fc + fm) = HVSB(_(fc + fm)) =1
and

Hvsp(fe — fm) = Hvsp(—=(fec = fm)) = 0.
Therefore, we conclude that

AA,
4

Yyse(f) = O = (fet+ fm)) +0(f + (fe+ fm), [fER,

whence

AcAnm

yvse(t) = cos 2m(fo+ fm)t), teER.

3.d When 0 < ¢ < %, we now have

Hyss(fo + fn) = Hysn(—(fe + f) = 5 (fm + ?) ety
and 1 B 1
Hyso(fe ~ Fu) = Hso(~(Fe ~ ) = 5 (—fm n 5) - —ct1
whence
Yvss(f)
= Al (e )t = fom o+ (me 3 ) 60— ot 1)
+ Aff’” ((—c+ %) O(f + fe = fm) + (c+ %) 5(f+fc+fm)> .

It is now easy to see that

(et e (o oo

yvss(t) =
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for each t in R.

4.

4.a The signal t — £(¢) is periodic with period 7', and we have

/ |k g — /5 dt =T.
_T _T
2 2

Thus, the signal t — (t) admits a Fourier series representation of the form
_ jorkt
e(t) chke " teR
with Fourier coefficients

T
1 [2 . A
o = T/ kP =2 E gy =0 41,42, ..

NS

Now, for a given k£ =0,+1,+2, ..., we get

1 [0 . 1 [z . .
= _/ ejkpm(t)eJQWTtdt+_/ e]kpm(t)€7j2ﬂ-?tdt
T -z T Jo
L0 1 (2 0 o
= T/ e~dkPe=i2m Tty 4 T eIhP eI Tt gt
T
-3
1 H jkp j2mit % ik j2m ¢
= T/ e el TTidl + — / e P e I T L, (1.5)
0
For k =0,
1 ) )
=5 (e/* + e77*P) = cos (kp) .
For k = £1,42, ..,

Cr. =

m
M
=
o

N
b“&
Sai
SIE

—_

~_

+
Q,
N =
S
N
lm
bu
;:i
|
—_
~__—

- (%) sin (kp) (1.6)
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As a result,
—1)k — .
e(t) = cos(kp)—sin(kp) Zk;ﬁo ((17)71) pI2m Rt
= COS (kp) — sin (kp) i (w) <€j2ﬂ-%t _ e*j?ﬂ’%t)
— mk
. (=D =1\ | k
= cos (kp) — 2jsin (kp) Z <7 sin | 2m—t
— mk T
B Asin (kp) o 1 . 20+ 1
= cos(kp) +J - Zz:; T (27T T t) : (1.7)

4.b The PM signal ypy : R — R can be evaluated as follows: For each ¢t in R, we get

YrPM (t) = AC COS (27cht + kpm( ))
— ACRG ( J (27 fet+kpm(t) )
= A.Re (ejzﬂf ¢ )

: Asin (kp) v 1 . 20+ 1
— j2m fet
A.Re (e (cos (kp)+ 7 - ZO T sin (27r 7 t)))
= A.cos(kp)cos (27 f.t)
44, = 1 20+ 1
- sin (kp) sin (27 f.t )Z sin (27T T t>

= A.cos (kp)cos (27ch )

oSt )

24, . “ 20+ 1
+ ——sin (k:p) % T1¢ ( ) t) . (1.8)

4.c The PM signal ypy : R — R has frequency content at the discrete frequencies

f==+f. and f:j:(fcj:%T—i_l), (=0,1,...

The power of the PM signal ypy : R — R can now be computed in the usual manner:

Py = lim A/ lypa (t ]dt

= A% f}un ﬂ/ |cos (27 fot + kpm(t))|” dt

A2 1 A
= =< 1+hm—/ cos (4m f.t + 2kpm(t dt>
(14 Jim gy [ cost pm(t)
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for it is easy to see that

1
jgr;oﬂ/_f‘ cos (4m fot + 2kpm(t)) dt =0

by a symmetry argument that uses the form of m.
Another approach is to use your answer in Part 4.c:

1o
PyPM = jg%o ﬂ /A |pr(t)|2dt
A 2 | 247 . ox~ 1
= 5 coslhe) 4 Z5msin(kr) ; i ye
2A? o 1
+ —Ssin (kp) —_—
2 ; (20 +1)2
A? ,  4A? 5 — 1
_ I L “cgin(k -
y coslhe)”+ =57 sin (kr) ; 20+ 1)
A2
= —=. 1.10
. (1.10)
This last fact follows from the well-known identity!
- 1 2
Z —_ = — (1.11)
2
= (20+1) 8
Indeed (1.10) holds if
cos (kp)® + — sin (kp)” Y b 1
R e GRSV ER
and this condition can be rewritten as
8 . e 1 2 . 2
— sin (kp) 2 EEE =1—cos(kp)” =sin(kp)”,

and (1.11) validates it!

IThis is also a consequence of Fourier series analysis with the help of Parseval’s Theorem. You were
not expected to know it.



