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COMMUNICATIONS SYSTEMS

ANGLE MODULATION

Throughout, we consider the information-bearing signalm : R → R. Its
Fourier transform is given by

M(f) :=

∫
R

m(t)e−j2πftdt, f ∈ R.

Frequency modulation

The FM waveformsFM : R → R associated with the information-bearing
signalm is given by

sFM(t) = Ac cos (θFM(t)) , t ∈ R

with

θFM(t) = 2πfct+ 2πkF

∫ t

0

m(r)dr, t ∈ R.

Phase modulation

The PM waveformsPM : R → R associated with the information-bearing
signalm is given by

sPM(t) = Ac cos (θPM(t)) , t ∈ R

with
θPM(t) = 2πfct+ kPm(t), t ∈ R.

Single-tone modulating signals
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In an attempt to understand how the spectrum of angle-modulated signals is
shaped by that of the modulating signal, we consider the simple case of a single-
tone modulating signalm : R→ R, say

m(t) = Am cos (2πfmt) , t ∈ R

with amplitudeAm > 0 and frequencyfm > 0. In that case, we note that

θFM(t) = 2πfct+ 2πkF

∫ t

0

Am cos (2πfmr) dr

= 2πfct+ 2π
kFAm
2πfm

sin (2πfmt)

= 2πfct+
kFAm
fm

sin (2πfmt)

= 2πfct+ β sin (2πfmt) , t ∈ R(1)

where

β :=
∆f

fm
and ∆f := kFAm.

Next,

cos (θFM(t)) = cos (2πfct+ β sin (2πfmt))

= <
(
ej2πfctejβ sin(2πfmt)

)
, t ∈ R.(2)

The functiont → ejβ sin(2πfmt) being continuous and periodic with periodTm =
1
fm

, it admits the Fourier series representation

ejβ sin(2πfmt) =
∑

k
cke

j2πkfmt, t ∈ R

with

ck =
1

Tm

∫ Tm
2

−Tm
2

ejβ sin(2πfmt)e−j2πkfmtdt, k = 0,±1,±2, . . .

Now fix k = 0,±1,±2, . . .. Upon making the change of variablex = 2πfmt,
we get

ck =
1

Tm

∫ Tm
2

−Tm
2

ejβ sin(2πfmt)e−j2πkfmtdt

=
1

2π

∫ π

−π
ej(β sin(x)−kx)dx

= Jk(β)(3)
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where

Jk(β) :=
1

2π

∫ π

−π
ej(β sin(x)−kx)dx, β ∈ R

defines thekth order Bessel function of the first kind.
Substituting we find

ejβ sin(2πfmt) =
∑

k
Jk(β)ej2πkfmt, t ∈ R.

Therefore,

Ac cos (θFM(t)) = Ac<
(
ej2πfctejβ sin(2πfmt)

)
= Ac<

(
ej2πfct

∑
k
Jk(β)ej2πkfmt

)
= Ac

∑
k
Jk(β)<

(
ej2πfctej2πkfmt

)
= Ac

∑
k
Jk(β) cos (2π (fc + kfm) t) , t ∈ R.(4)

In the frequency domain this last relationship becomes

SFM(f)

=
Ac
2

∑
k
Jk(β) (δ(f − (fc + kfm)) + δ(f + (fc + kfm)))(5)

for all f in R. Thus, although the single-tone signalm has frequency contentonly
at the frequenciesf = ±fm, the corresponding FM wave hasinfinite bandwidth
since it displays frequency content at the countably infinite set of frequencies

f = ±(fc + kfm), k = 0,±1, . . . .

Narrow-band vs wide-band FM

Using elementary trigonometric formulae, we observe

sFM(t) = Ac cos(θFM(t))

= Ac cos

(
2πfct+ 2πkF

∫ t

0

m(r)dr

)
= Ac cos (2πfct) cos

(
2πkF

∫ t

0

m(r)dr

)
− Ac sin (2πfct) sin

(
2πkF

∫ t

0

m(r)dr

)
, t ∈ R(6)
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Narrow-band FMis characterized by

2πkF

∣∣∣∣∫ t

0

m(r)dr

∣∣∣∣� 1, t ∈ R(7)

in which case

sin

(
2πkF

∫ t

0

m(r)dr

)
' 2πkF

∫ t

0

m(r)dr

and

cos

(
2πkF

∫ t

0

m(r)dr

)
' 1

for all t in R. Therefore, we have the approximation

sFM(t) ' sNB−FM(t), t ∈ R(8)

where the narrow-band FM signalsNB−FM : R→ R is defined by

sNB−FM(t) = Ac cos (2πfct)

− Ac sin (2πfct)

(
2πkF

∫ t

0

m(r)dr

)
, t ∈ R.(9)

In other words, when condition (7) holds, the FM waveformsFM is well approx-
imated bysNB−FM and therefore can be replaced by it. The advantage of doing
so is that the signalsNB−FM is AM-like in its structure and can be generated eas-
ily according to techniques developed for amplitude modulation.Wide-band FM
arises when the condition (7) fails to hold.

Carson’s formula

The realization that the spectrum ofsFM has infinite extent leads to the follow-
ing practical concern: How much bandwidth is needed to transmitsFM without too
much distortion?

One answer to this question was given by Carson, and is summarized in the
formula that carries his name: Carson’s formula states that the transmission band-
widthBT of the FM wave associated with the single-tone signalm should be set
to

BT,Carson := 2fm + 2∆f

= 2fm (1 + β)(10)
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since∆f = fmβ by definition.
One way to generalize Carson’s bandwidth formula could proceed byformally

giving the quantitiesfm andβ interpretations which do not rely on the specific
form of the information-bearing signalm. We do this as follows:

In the single-tone case, the frequencyfm can be interpreted as the cutoff fre-
quency of the signal – In other words,fm is the bandwidth of the signal. On the
other hand,∆f can be viewed as describing the largest possible excursion of the
instantaneous frequency fromfc: Indeed, the instantaneous frequency of the FM
wave at timet is given by

1

2π

d

dt
θFM(t) = fc + kFAm cos (2πfmt)

and the corresponding deviation in instantaneous frequency at timet is simply

1

2π

d

dt
θFM(t)− fc = kFAm cos (2πfmt) .

Therefore, the maximal deviation fromfc is given by

sup (|kFAm cos (2πfmt)| , t ∈ R) = kFAm = ∆f.

Now consider an information bearing signal which is bandlimited with cutoff
frequencyW > 0. With the discussion for the single-tone modulating signal in
mind, it is natural to replace in Carson’s formulafm byW and∆f byD with

D := sup (kF |m(t)| , t ∈ R) .

This suggests the approximation

BT ' BT,Carson

with

BT,Carson := 2W + 2D

= 2W (1 + β)(11)

whereβ is defined as

β :=
D

W
=

sup (kF |m(t)| , t ∈ R)

W
.
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At this point, you may feel that the generalized Carson’s formula discussed
above is simply a formal expression without much practical grounding. We now
show through an approximation argument (see below) that the bandwidth as given
byBT,Carson is indeed meaningful from an engineering point of view.

The basic idea is to characterize the spectrum of the FM wave associated with
asampledversion of the information-bearing signal. Thus, fixT > 0. We approx-
imate the information-bearing signalm : R → R by the staircase approximation
m?
T : R→ R given by

m?
T (t) = m(kT ), kT ≤ t < (k + 1)T

with k = 0,±1, . . .. We then replaceθFM : R → R as defined above byθ?FM,T :
R→ R given by

θ?FM,T (t) = 2πfct+ 2πkF

∫ t

0

m?
T (r)dr, t ∈ R

and write
s?FM,T (t) = Ac cos

(
θ?FM,T (t)

)
, t ∈ R.

Fix f in R. Note that

S?FM,T (f) =

∫
R

Ac cos
(
θ?FM,T (t)

)
e−j2πftdt

= Ac
∑

k

∫ (k+1)T

kT

cos
(
θ?FM,T (t)

)
e−j2πftdt.(12)

Now, for k = 0, 1, . . ., with kT ≤ t < (k + 1)T , we have

θ?FM,T (t) = 2πfct+ 2πkF

∫ t

0

m?
T (r)dr

= 2πfct+ 2πkF

(
T

k−1∑
`=0

m(`T ) +m(kT )(t− kT )

)

= 2π(fc + kFm(kT ))(t− kT ) + 2πT

(
kfc + kF

k−1∑
`=0

m(`T )

)
= 2π(fc + kFm(kT ))(t− kT ) + 2πγkT(13)
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where we have set

γk := kfc + kF

(
k−1∑
`=0

m(`T )

)
.

Direct substitution yields∫ (k+1)T

kT

cos
(
θ?FM,T (t)

)
e−j2πftdt

=

∫ (k+1)T

kT

cos (2π(fc + kFm(kT ))(t− kT ) + 2πγkT ) e−j2πftdt

= e−j2πkfT ·
∫ T

0

cos (2π(fc + kFm(kT ))τ + 2πγkT ) e−j2πfτdτ.(14)

To evaluate this last integral, we note that∫ T

0

e±j2π((fc+kFm(kT ))τ+γkT )e−j2πfτdτ

= e±j2πγkT
∫ T

0

ej2π(±(fc+kFm(kT ))−f)τdτ

= e±j2πγkT · ej2π(±(fc+kFm(kT ))−f)T − 1

j2π (±(fc + kFm(kT ))− f)

= a±k (f)
sin (π (±(fc + kFm(kT ))− f)T )

π (±(fc + kFm(kT ))− f)

= a±k (f)
sin (π (f ∓ (fc + kFm(kT )))T )

π (f ∓ (fc + kFm(kT )))
(15)

with
a±k (f) = ej2πδ

±
k (f)T

where

δ±k (f) = ±γk +
1

2
(±(fc + kFm(kT ))− f) .

Recall that the sinc functionsinc : R→ R is given by

sinc(x) =
sin(πx)

πx
, x ∈ R.

Therefore, for eachk = 0, 1, . . ., we have∫ (k+1)T

kT

cos
(
θ?FM,T (t)

)
e−j2πftdt
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=
1

2
a+
k (f)

sin (π (f − (fc + kFm(kT )))T )

π (f − (fc + kFm(kT )))

+
1

2
a−k (f)

sin (π (f + (fc + kFm(kT )))T )

π (f + (fc + kFm(kT )))

=
1

2
a+
k (f) · sinc ((f − (fc + kFm(kT )))T )

+
1

2
a−k (f) · sinc ((f + (fc + kFm(kT )))T ) ,(16)

and we can conclude∫ ∞
0

cos
(
θ?FM,T (t)

)
e−j2πftdt

=
1

2

∞∑
k=0

a+
k (f) · sinc ((f − (fc + kFm(kT )))T )

+
1

2

∞∑
k=0

a−k (f) · sinc ((f + (fc + kFm(kT )))T ) .(17)

The zeroes of the sinc function occur atx = ±`, ` = 1, 2, . . ., and its main
lobe occupies the interval[−1, 1]. As a result, for eachk = 0, 1, . . ., the main
contribution of the term

1

2
a±k (f) · sinc ((f ∓ (fc + kFm(kT )))T )

is taking place on an an interval centered at

±(fc + kFm(kT ))

and of length2/T , namely[
±(fc + kFm(kT ))− 1

T
,±(fc + kFm(kT )) +

1

T

]
.

Similar arguments could be made for the casek = −1,−2, . . . and would lead to
a similar expression for∫ 0

−∞
cos
(
θ?FM,T (t)

)
e−j2πftdt, f ∈ R.
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The discussion suggests that most of the spectral content is contained in the
interval [

±(fc −D)− 1

T
,±(fc +D) +

1

T

]
since

|kFm(kT )| ≤ D, k = 0,±1, . . .

by the definition ofD. This leads to estimating the transmission bandwidth of
s?FM,T as being

BT ' 2D +
2

T
.

If we sample at the Nyquist rate, that isT = 1
2W

, then the information con-
tained inm is recoverable fromm?

T , and the transmission bandwidths of their
corresponding FM waveforms should be commensurate. In short,

B? = 2D + 4W

is expected to provide a reasonably good approximation toBT . Note that

B? = 2D + 2W + 2W = BT,Carson + 2W

so that this argument provides an approximation to the transmissison bandwith
of the FM wavesFM which is more conservative than the one provide by Car-
son’s formula. This can be traced to the fact that the approximation is based on a
sampling argument.

Immunity of angle modulation to non-linearities

Consider a non-linear deviceϕ : R→ R of the form

ϕ(x) =
M∑
m=1

amx
m, x ∈ R

for some integerM ≥ 2 and assumeaM 6= 0.
For eacht in R, we note that

ϕ(sFM(t)) =
M∑
m=1

am (Ac cos(θFM(t)))m
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=
M∑
m=1

amA
m
c (cos(θFM(t)))m

=
M∑
m=1

amA
m
c

(
m∑
k=0

am,k cos(kθFM(t))

)
(18)

as we invoke Lemma 0.1 in the last step. Interchanging the order of summation
we conclude that

ϕ(sFM(t)) =
M∑
m=1

amA
m
c am,0

+
M∑
k=1

(
M∑
m=k

amA
m
c am,k

)
cos(kθFM(t))

=
M∑
`=0

BM,` cos(`θFM(t))(19)

with

BM,` =


∑M

m=1 amA
m
c am,0 if ` = 0∑M

m=` amA
m
c am,` if ` = 1, . . . ,M .

(20)

For each̀ = 1, . . . ,M , the signalt → cos(`θFM(t)) is the FM waveform
at carrier frequencỳfc generated by the signalt → `m(t). According to the
generalized Carson’s rule, for all practical intent, we can view this signal as a
bandpass signal whose (transmission) bandwidthB` is given by

B` = 2(W +D`) with D` = `D

since

D` = sup (kF |`m(t)| , t ∈ R)

= ` sup (kF |m(t)| , t ∈ R) = `D.(21)

Under the appropriate conditions each of the componentst → cos(`θFM(t))
can be extracted fromϕ(sFM) by means of bandpass filtering. For instance, to
recoversFM from ϕ(sFM) we pass the latter through a bandpass filter centered at
fc with bandwidthB1 such that

fc +
B1

2
< 2fc −

B2

2
.
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This is equivalent to

fc + (W +D) < 2fc − (W + 2D),

and requires that the condition

2W + 3D < fc

holds.
Similar arguments can be given for extractingt → cos(`θFM(t)) by means of

bandpass filtering for̀ = 2, . . . .M .

Generating FM signals

Direct method Using a voltage-controlled oscillator (VCO)

Indirect method of Armstrong We seek to generate the FM signalsFM : R→
R associated with the information-bearing signalm, say

sFM(t) = Ac cos (θFM(t)) , t ∈ R

with

θFM(t) = 2πfct+ 2πkF

∫ t

0

m(r)dr, t ∈ R

for some givenkF > 0. We are in the situation when the condition (7) fails to hold
for the choice ofkF so thatsNB−FM is not a good approximation to the desired
FM signalsFM.

We begin by writingkF = Mk?F for some positive integerM , so that the
condition (7) now holds fork?F , namely

2πk?F

∣∣∣∣∫ t

0

m(r)dr

∣∣∣∣� 1, t ∈ R.

Under this condition the FM signals?FM : R→ R given by

s?FM = Ac cos

(
2πfct+ 2πk?F

∫ t

0

m(s)ds

)
, t ∈ R
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can be well aprroximated by the narrow-band FM signals?NB−FM : R→ R defined
by

s?NB−FM(t) = Ac cos (2πfct)

− Ac sin (2πfct)

(
2πk?F

∫ t

0

m(r)dr

)
, t ∈ R.(22)

Next, the narrow-band FM signals?NB−FM : R→ R is converted to the desired
wide-band FM signal as follows: Consider a non-linear deviceϕ : R → R of the
form

ϕ(x) =
M∑
m=1

amx
m, x ∈ R

with aM 6= 0.
For eacht in R, with

θ?FM(t) = 2πfct+ 2πk?F

∫ t

0

m(r)dr,

we note from (19)-(20) that

ϕ(s?FM(t)) =
M∑
`=0

BM,` cos(`θ?FM(t))(23)

with the coefficients as given by (20).
By the same arguments as given earlier in the discussion of immunity of angle

modulation to non-linearities, we can extract the signalt → cos(Mθ?FM(t)) by
feeding the signalt→ ϕ(s?FM(t)) through a bandpass filter with center frequency
Mfc and bandwidthB?

M given by

B?
M = 2(W +D?

M)

where for each̀ = 1, 2, . . ., we have

D?
` = sup (k?F |`m(t)| , t ∈ R)

= ` sup (k?F |m(t)| , t ∈ R)

=
`

M
sup (kF |m(t)| , t ∈ R) .

=
`

M
·D.(24)
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As a result,
B?
M = 2(W +D?

M) = 2(W +D)

as should be expected!
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Properties of Bessel functions

0. For eachk = 0,±1, . . . and everyβ in R, Jk(β) is an element ofR.

Proof. Fix k = 0,±1, . . . andβ in R. Note that

Jk(β)? =

(
1

2π

∫ π

−π
ej(β sinx−kx)dx

)?
=

1

2π

∫ π

−π
e−j(β sinx−kx)dx

=
1

2π

∫ π

−π
ej(−β sinx+kx)dx

=
1

2π

∫ π

−π
ej(β sin(−x)−k(−x))dx

=
1

2π

∫ π

−π
ej(β sin y−ky)dy

= Jk(β),(25)

whenceJk(β) is an element ofR.

1. For eachk = 0, 1, . . ., we have

J−k(β) = (−1)kJk(β), β ∈ R.

Proof. Fix k = 0, 1, . . . andβ in R. Using the change of variabley = π − x we
find

J−k(β) =
1

2π

∫ π

−π
ej(β sinx+kx)dx

=
1

2π

∫ π

−π
ej(β sin(π−y)+k(π−y))dy

=

(
1

2π

∫ π

−π
ej(β sin y−y))dy

)
· ejkπ

= (−1)kJk(β)(26)

sinceejkπ = (−1)k.
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2. For eachk = 0, 1, . . ., we have

Jk(−β) = (−1)kJk(β), β ≥ 0.

Proof. Fix k = 0, 1, . . . andβ ≥ 0. We note that

Jk(−β) =
1

2π

∫ π

−π
ej(−β sin y−ky)dy

=
1

2π

∫ π

−π
ej(β sin(−y)+k(−y))dy

=
1

2π

∫ π

−π
ej(β sinx+kx)dx

= J−k(β)(27)

and the conclusion follows by Fact1.

3. We have
J0(β) = 1 +O(β) (β → 0).

Proof. Fix β in R. From the definitions we see that

J0(β)− 1 =
1

2π

∫ π

−π

(
ejβ sinx − 1

)
dx

=
1

2π

∫ π

−π

(∫ β sinx

0

jejtdt

)
dx(28)

so that

|J0(β)− 1| ≤ 1

2π

∫ π

−π

∣∣∣∣∫ β sinx

0

jejtdt

∣∣∣∣ dx
≤ 1

2π

∫ π

−π

∣∣∣∣∣
∫ |β sinx|

0

∣∣jejt∣∣ dt∣∣∣∣∣ dx
≤ 1

2π

∫ π

−π
|β|| sin x|dx

≤ |β|(29)
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and the conclusion follows.

4. We have

J1(β) =
β

2
(1 + o(1)) (β → 0).

5. For each̀ = 0, 1, . . . we have

J`(β) =
β`

2``!
(1 + o(1)) (β → 0).

6. For eachβ in R, we have ∑
`
|J`(β)|2 = 1.

Proof. For eachβ in R, the functionx → ej sinx is periodic with period2π and
therefore admits a Fourier series representation. It is a simple matter to see that

ej sinx =
∑

`
Jk(β)ej`x

and by Parseval’s Theorem we get

1

2π

∫ π

−π
|ejβ sinx|2dx =

∑
`
|J`(β)|2.

The conclusion follows from the fact that

|ejβ sinx|2 = 1, x ∈ R.
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On powers ofcos θ

Given isθ in R. We are interested in understanding how to compute

(cos θ)m , m = 1, 2, . . .

We shall repeatedly use the trigonometric identity

2 cosα cos β = cos(α + β) + cos(α− β)

for arbitraryα andβ in R.
Form = 2, we have

(cos θ)2 =
cos(2θ) + 1

2
.(30)

Next, withm = 3,

(cos θ)3 =
cos(2θ) + 1

2
· cos θ

=
cos(2θ) cos θ + cos θ

2

=
cos(3θ)+cos θ

2
+ cos θ

2

=
cos(3θ) + 3 cos θ

4
(31)

Building on the pattern emerging from these calculations we now set out to
prove the following fact.

Lemma 0.1 Given θ inR, for eachm = 1, 2, . . ., there exist scalars am,0, . . . , am,m,
independent of θ, such that

(cos θ)m =
m∑
k=0

am,k cos(kθ).(32)

Proof. The proof proceeds by induction. The conclusion (32) is true form = 1
(with a1,0 = 0 anda1,1 = 1), for m = 2 (with a2,0 = 1

2
, a2,1 = 0 anda2.2 = 1

2
)

and form = 3 (with a3,0 = 0, a3,1 = 3
2
, a3,2 = 0 anda3,3 = 1

4
).
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Now assume (32) to hold for somem ≥ 2. We note that

(cos θ)m+1 = (cos θ)m · cos θ

=

(
m∑
k=0

am,k cos(kθ)

)
· cos θ

= am,0 cos θ +
m∑
k=1

am,k cos(kθ) cos θ

= am,0 cos θ +
m∑
k=1

am,k
cos((k + 1)θ) + cos((k − 1)θ)

2

= am,0 cos θ +
1

2

m∑
k=1

am,k cos((k + 1)θ) +
1

2

m∑
k=1

am,k cos((k − 1)θ)

= am,0 cos θ +
1

2

m+1∑
k=2

am,k−1 cos(kθ) +
1

2

m−1∑
k=0

am,k+1 cos(kθ)

=
m+1∑
k=0

am+1,k cos(kθ)(33)

with

am+1,k =



am,1
2

if k = 0

am,0 + am,2
2

if k = 1

1
2

(am,k−1 + am,k+1) if k = 2, . . . ,m− 1

am,m−1

2
if k = m

am,m
2

if k = m+ 1

by direct inspection. This completes the proof of Lemma 0.1.


