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COMMUNICATIONS SYSTEMS

ERROR CONTROL AND CODING:
LINEAR BLOCK CODES

Linear block codes
A (n,k)-codeC : H, — H, is alinear (block) code if its codebook is alinear
subspace df,,, i.e., for arbitraryc andc’ in C, the vectorc + ¢ is also an element
of C. There are many codes (as encoding mappings) which can be used to realize
the same codebook. In the case of linear codes, implementations are available
which are quite convenient as we now discuss.

All vectors are row vectors and all matrices have entrie®iri }. All matrix
calculations are done in modufarithmetic.

With P = (p;;) a matrix of dimensior x (n—k), we construct thgenerating
matrix G = (g;;) given by

G=I[P|I).

The matrixG has dimensiong x n.
The generating matri& defines dinear mappingC¢; : Hy — H,, given by

x =Cq(m)=mG, mcH,.

Whenever this mapping is one-to-one, it can be used to defingid-code whose
codebook is the collectiofi given by

Cq ={mG, m c H;}.

It is plain thatCc; is a linear subspace 6f,, andC¢; is therefore a linear code.
With information vectorm in H,, we associate the codewoedn H,, given

by

c=mG.

Using the form of the generating matig¥, this codeword can be decomposed as
c=(b,m)

with b being the element df{,,_,. given by
b=mP.
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This vector is known as the vector périty bitsassociated with message. By
construction this code is in systematic form.
Thesyndromematrix H = (h;;) is the(n — k) x n matrix given by

H=[I,,|P].

It plays an essential role in implementing the decoding operations associated with
the codef .

Lemma 0.1 For any linear block code C' with generating matrix G, we have

HG' = O iy

Proof. Applying the definitions of the matrices and H we get

HG' = [I,.,| P [P| L]
I, .P'+ P'I,

= P'+ P
(l) = O(nfk)xk: (mod2).

This last fact leads to the following simple way of checking whether an ele-
ment of H,, is a codeword i€ ;.

Lemma 0.2 For any linear block code C' with generating matrix G, we have

Cg={recH,:2H' =0,_;.}

Proof. We need to show thdl = C}I where for convenience we have set

Crp={z € Hn: xH' =0, .}
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For any element in C, there exists a message vectarin H,; such that
c = mG, whence
cH' = (mG)H'
= m (GHt)
= m (HGt)t
= m (O kyxr)
= MmO (k)
(2) = 0,4 (mod2)
upon making use of Lemma (0.1). This establishes the inclu&erc C}{.

Conversely, picke in Cy;. This element ofH,, can always be written as
x = (y, z) for somey in ‘H,,_; andz in H,. With this notation we get

On—k = a:Ht
= (yaz) [In—k | Pt]t
(3) = y+2zP (mod?2)
whence
y=y+y+zP=2P (mod2).
As aresult,

x=(zP,z) = zG,

andzx is the codeword associated withi.e.,z is an element o(ﬂg. The reverse
incIusionC}{ C Cgg is now established. [

Minimum (Hamming) distance of linear codes
Consider a linear code with generating matdx We now show that the minimum
(Hamming) distance of this codeé can be computed efficiently.

Lemma 0.3 We have
4 dy(C) = min (wyg(MG) : m € Hy, m # 0f)
with

n—

k
(5) = (Z mjpjg> +wy(m), m e Hy.
J=1 mod 2

(=1
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Proof. Pickm andm’ in Hy. Itis plain that

du(Cgq(m),Cq(m’)) = dy(mG,m'G)
= wy(mG —m'G)
(6) = wy((m—m')G).

It is also the case that

{m—m', m 7 m }:{mEHk: m%Ok}

m,m' € H, m € Hy,

Using these facts we conclude that

dy(C) = inf (dH(C(m),C’(m’))7 m # m/ )

m,m’ € H,

= inf (wH((m -m')G), m'inm7/é gL?/-lk )
(7) = inf (wH(mG), m € Hi, m 7é Ok) ,

and (4) is established.
Next, for eachm in ‘H;,, we have

wy(mG) = Y (mG),

k
8) = Y (mP)+) m

and (5) readily follows.

Parity bits

Wth positive integep, for eachx in H, we set

Par(xz) =2 + ...+, (mod2).
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ThusPar(x) is either0 or 1, and we shall refer to it as th@ven) parity bit
associated with the information vecter

Let 1, denote the element i, whosep entries are identical and equallp
ie.,

» times

It is easy to check that
Par(x) = x1, (mod 2)

for eachz in H,,.

Single parity check (PBC) codes

Definitions — The (even)parity bit checkPBC) code can be defined as follows:
With an information vectorn in ‘H,, we associate the codewatdn H,, given by

c = (Par(m), m).

Obviously,n = k£ + 1. This is a linear block code with generating maifixgiven

by

with thek x 1 matrix P given by
P=1..
Consequently,

Cppc = {(Par(m),m), m c Hk}

Structural properties — Here the matrixf is al x (k + 1) matrix (thus a row
vector) and takes the form
H = [1|14].

It is a simple matter to check membershiglissc: Pickx in H,,, say of the form
x = (y, z) with y in {0, 1} andz in Hy, and note that

zH'=y+ 21}, (mod2).
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By Lemma 0.2 we conclude that= (y, z) belongs tcCpp if and only if
y+21;, =0 (mod?2).

Put differently,z belongs tcCppc if and only if Par(x) = 0, hence the character-
ization

Cppc = {ZB eEH,: Par(:c) = 0}
Note also thaPar(x) = 0 for « in H,, is just another way to say thaty () is
even whene # 0,,.

Any codeworde is of the forme = (Par(m), m) for somem in Hy, and we
have

9) wy(Par(m),m) = Par(m)+ wy(m).
By Lemma 0.3 we have
(10)  dy(Cppc) = min(Par(m)+wy(m): m € Hy, m # 0).

It is plain thatdy (Cppc) > 2 — Just takem to have exactly one non-zero com-
ponent. However, it is not possible to haker(m) + wy(m) = 1 for somem

in Hy. IndeedPar(m) = 1 implieswy(m) = 0, thusm = 0, and this contra-
dictsPar(m) = 1! Similarly, if Par(m) = 0, thenwy(m) = 1 so thatm has
exactly one non-zero component. Again, a contradiction arises since such vector
has parityPar(m) = 1. Consequently,

dH(Cch) = 2.

By earlier results we conclude that PBC codes can detect the occurence of a single
error.
However more happens to be true. Indeed, we readily see that

Ccc CPBC

Par(c + x) = Par(x), Y

Therefore, for any codewordin Cppc, we get

ngc(C) = {667‘(”2 G#On, C+€ECPBc}
= {e€HH,: e#0,, Par(c+e) =0}
(12) = {e€H,: e#0,, Par(e) = 0}.
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By a remark made earlier we can now conclude that
(12) gp]gc(C) = { ecH,: e 7é 0,, wH(e) ever} .

It now follows that PBC codes can detect any error pattern withcaimumber
of errors but will not be able to detect any pattern witresennumber of errors —
After all in this last case the the resulting vector still has zero parity.

Performance under the vector error model — Note that the se€ppc(c) is
independent of the codeword hence

Epae(c) = Epac(0n), ¢ € Cppe.
It is also easy to check that
lngc(On” =on 1l _1.

Therefore, X
& 0, 2+ — 1
Err(Cgpc) = | PB;E ) = on

with .
lim Err(Cgpc) = 3"

Performance under the componentwise model — This time we get

EIT(Cch) = Z OéwH(e)(l — Oé)n_wH(e)
ecéppc(0n)
5]

= Z Z awH(e)(l _ a)n—wH(e)

k=1 eEngc(On): ’LUH(e)ZQk

S ()

[
TN TN
o3
N~

Q
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where the last step requires< 1. In that case, only neigbhoring errors matter,
i.e., the ones for which
wy(e) = 2.

Repetition codes
Here we assume that= 2p + 1 for some positive integer.

Definitions — A repetitioncode can be defined as follows: With an information
bit m in {0, 1}, we associate the codewotdn H,, given by

c=(m,...,m.m)
—_——

2p times

Thus the bitn is repeate@p times, hence the terminology. Obviousty= 1 and
n = 2p + 1. Thisis a linear block code with generating matfixgiven by

G = [15]1]
with thel x 2p matrix P given by
P - 1212'

ConsequentlyCre, = {0,,, 1, }, whencedy (Crep) = n.
It is also easy to check for evesyin Cg,, that

Erep(c) ={e€H,: €e#0,, c+e € Crep} = {1}

Repetition codes have the message invariance property, Stthed,,) = Erep(1s)-

Performance under the vector error model — It is plain that

Err(Crep) = 27"

Performance under the componentwise model — It is plain that

Err(Crep) = ™.

General linear codes

Consider a linear code with generating mat@x
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Performance under the vector error model — It is plain that

(13) Err(C) = 27" |€0(0,)] .

Performance under the componentwise model — Write

50,1:::{6680(071)3 wH(e):k:}, k?:1,...,’rl.

Upon noting
Ec(0,) = Up_ Ec,
we find
Err(C) = Z (€ (1 — g)n—wn(€)
6650(0")
- Z Z avn(@(1 — q)rwn(@)
k=1 eegc’k
=3 DIRUIEIE
k=1 eeé‘c,k
= Z Oék(l - Oé)nik ’80,14‘
k=1
(14) = Y af(l—a)"F el
k=du (C)
since

Son=0, k=1,....dyC) -1

Syndrome decoding

Consider a linear code with generating mat@x

Cosets — Givenx in 'H,,, we define theosetinduced byx as the se€oset(x)
defined by
Coset(x) ={x +¢c, cc C}.
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It is plain thatx is always a member of the cos®iset(x) it induces. Note that
all the elements igoset(x) are distinct, so that
|Coset(x)| = 2~

Furthermore, there ar&®~* distinct cosets and they form a partition&f,. For
distinctx andy in H,, eitherCoset(x) = Coset(y), or Coset(x) # Coset(y),
with Coset(x) N Coset(y) = 0 in the latter case.

Lemma 0.4 With x and y in 'H,,, we have

(15) Coset(x) = Coset(y)
if and only if
(16) cH' = yH"

As a consequence of Lemma 0.4 we conclude that

(17) Coset(x) = {y € H,: yH' =xH'}.

Proof. Pick« andy in H,, such that (15) holds. For any elemenin this set,
there exisic andc’ in C such thatz: = = + candz = y + ¢/. By Lemma 0.1 we
get

zH'= (x+c)H' =xH"' (mod 2)

and
zH'= (y+c)H'=yH' (mod?2),

whence (16) holds.
Conversely, ifx andy in H,, satisfy (16), then
(x —y)H' =0,_; (mod?2),

and by Lemma 0.2 we conclude that= x — y (mod 2) is a codeword. This
shows thate = y + c is an element ofoset(y) SoCoset(x) C Coset(y). By
symmetryCoset(y) C Coset(x) and this completes the proof of (15). [ |
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Cosets and Nearest Neighbor decoding —Imagine that the message in Hy, is
being transmitted over an imperfect channel. To that end, the linear blogk-
codeC : H, — H, with generating matrixG is used to encode the message
into the codeword¢ = mG in H,,. After modulation/demodulation, the receiving
end is provided with the vectarin H,,. Assuméhat Nearest Neighbor decoding
is used. This requires to find the estimatg,, which minimizesdy (r, ¢’) with
respect ta’’ in C, or equivalentlygcye., which minimizeswy (r — ¢’) with respect

to ¢’ in C. However, note that

{r—¢, ¢ €C} = Coset(r).

Thereforer — ¢ is that element ifoset(r) with the smallest Hamming weight
amongst the elements @vset(r). Thus, letx denote any element itoset(r)
with smallest Hamming weight amongst the elementiget(r). Thus, we can
takecnes, t0 be such that

r— /C\Near = £7
i.e.,

ENear =7r— i

Nearest Neighbor decoding and the standard array — This observaton is im-
plemented through the followirgtandard arrayto be described shortly in further
details: We construct a partitiok,, into 2"—* distinct cosets, sag, . .., Con—r.
These cosets are constructed recursively by identifying distinct elements , xon—«
in H,, so that

Cy = Coset(xy), (=1,...,2"F

with x, selected so that
wy(xg) = argmin (x € Cp : wy(x)), (=1,...,2""
Upon reception of the vectoar, its cosetCoset(r) is identified. This amounts to
finding the unique integet = ¢(r) such that
Coset(r) = Cy.
By constructionz, has smallest Hamming weight amongst the elements of the
cosetC,. According to the earlier discussion it then follows tleat.,. is deter-

mined through
r— ENear = Ty

i.e.,
/C\Near =T —Zy.
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Constructing the standard array — To implement these ideas we construct the
so-called standard array. To do so we label the codewor@ssayc;, . . ., cyn-x,
with Ci — On

1. / =1-Wetake
wlzon

so that
() = Coset(x;) =C.

We automatically have
wy(x1) = min (wy(x), x€C)) =0

so thatx; is indeed the smallest Hamming weight amongst the elements of
C;. We visualize this coset as a row; see below.

‘COSGt(On)‘On‘CQ‘Cg ‘ ...‘cj ‘ ...‘Cgk‘

2. ¢ = 2 — Next, consider the complemefit of C', namely
01* =H, — 017
and select:, to be any element ity with minimum Hamming weight, i.e.,
Ty = argmin (x € C7 : wy(x)).

We then define
Cy = Coset(xs).

By constructionz, has the smallest Hamming weight amongst all the ele-
ments ofCs, i.e.,

wy () < wg(x), « € Coset(xs)

sinceCoset(xsz) N Coset(x;) = () (due to the fact that — 2 is not an
element ofC;,. We visualizeC';, and C, as successive rows in a table in
formation; see below.
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Coset(0,,) 0, Co c3 . Cc; . Cok
Coset(xz) | 2+ 0, |Xa+cCo | Ta+cC3 | ... | Ta+cCj| ... | XTa+ Cor

3. The generic step — This procedure is repeated: /Fer j for somej =
1,...,2" % assume thaf, ..., C,_; have been costructed. Consider the
complement’s of U.Z{C, i.e.

C; =M — (UZIC),
and selectr, to be an element in’; with minimum Hamming weight, i.e.,
x, = argmin (wy(x) : x € C}).
We then define

Cy = Coset(xy).

By constructione, has the smallest Hamming weight amongst the elements
Cg, i.e.,
wy(xy) <wg(x), = € Coset(xy).

The final table or array has the following form. Note that each row is a
coset and that thirst element of that row has minimum Hamming weight
amongs all the elements in that row. For that reason, the elemgnts , x.—«
are called théeadersof the cosets to which they belong.

Coset(0,) 0, Co cs . cj . Cok

Coset(xs) x, + 0, T+ Cy To+ces | ...| xTzFcec | ...| T+ cCo

Coset(xy) x,+0, T, + Cy x, + c3 N Y e
Coset(Ton—r) | Ton—k + 0, | Ton—r +Co | Ton-r +C3 | ... | Tonr +¢j | ... | Ton-k + Cox




