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COMMUNICATIONS SYSTEMS

DATA COMPRESSION:

Reminder
With a > 0, the logarithm in basea of x > 0, denotedloga x, is the unique scalar
such that

x = aloga x.

With x = 0 we tdopt he usual convention of definingloga x = −∞, andx loga x =
0 – The latter follows by an easy continuity argument since

lim
x↓0

x loga x = 0,

say by L’Hospital’s rule. Witha > 0 andb > 0, it is always the case that

logb x = (logb a) · loga x, x > 0

Throughoutlog2 x is logarithm in base2 of x > 0, and we uselog x for the
natural logarithm which corresponds toa = e.

Finite sources
LetX denote a finite set, hereafter called thealphabet, and we refer to an element
x of X as asymbol. A probability mass function (pmf)p = (p(x), x ∈ X ) onX
is any collection of scalars indexed byX such that

0 < p(x) ≤ 1, x ∈ X with
∑
x∈X

p(x) = 1.

A source is simply a pair(X ,p) whereX is a finite alphabet andp is a pmf on
X . It is sometimes convenient to refer to such a source by the notationX = (X ,p)
where theX -valued random variableX : Ω → X is defined on some probability
space(Ω,F ,P) such that

P [X = x] = p(x), x ∈ X .(1)

In short, we can think ofp(x) as the likelihood that the source generates symbol
x. In principle we could havep(x) = 0 for someof the values ofx in X .
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Extensions of a source
Consider a source(X ,p) whereX is a finite alphabet andp is a pmf onX . For
eachn = 1, 2, . . ., its nth extension is the source(X n,pn) where the pmfpn on
X n is given by

pn(xn) =
n∏
i=1

p(xi), xn = (x1, . . . , xn) ∈ X n.(2)

It is often useful to view thisnth extension in terms of anX n-valued random
variableXn : Ω→ X n defined on some probability space(Ω,F ,P) such that

P [Xn = xn] = pn(xn), xn ∈ X n.

where
Xn = (X1, . . . , Xn).

Under (2) it is easy to check that

P [Xn = xn] =
n∏
i=1

P [Xi = xi] , xn = (x1, . . . , xn) ∈ X n.

In other words, theX -valued random variablesX1, . . . , Xn are independent and
identically distributed (i.i.d.) random variables, each distributed according to the
pmf p.

Divergence
With a > 0, the divergence (in basea) between the pmfsp andq onX is defined
by

Da(p‖q) := −
∑
x∈X

p(x) loga

(
q(x)

p(x)

)
.

The basic bound
Da(p‖q) ≥ 0

holds with equality if and only ifp = q.

Entropy
With a > 0, the entropy (in basea) of the pmfp onX is defined by

Ha(p) := −
∑
x∈X

p(x) loga p(x).
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This is sometimes denotedHa(X ,p) orHa(X) where theX -valued random vari-
ableX : Ω → X is defined on some probability space(Ω,F ,P) such that (1)
holds.

The basic bounds
0 ≤ Ha(p) ≤ loga |X |

hold, and we have

1. The lower bound is achieved if and only if the pmfp is degenerate, i.e.,

Ha(p) = 0 if and only if p(x) = 1 for some x ∈ X ;

2. The upper bound is achieved if and only if the pmfp is the uniform pmf on
X , i.e.,

Ha(p) = loga |X | if and only if p(x) =
1

|X |
, x ∈ X .

Compression codes

LetB? denote the collection of all binary words withfinite length, i.e.,

B? = ∪∞n=1{0, 1}n.

A binary compressioncode, hereafter simply a code, for anX -valued source is
any mapping

C : X → B?.
For eachx in X , C(x) is known as thecodewordassociated withx underC. It
is customary to refer to the collection{C(x), x ∈ X} of all codewords as the
codebook forC, and to identify it withC.

Some terminology: A codeC : X → B? is said to be

1. non-singular ifC(x) 6= C(y) for any pair of distinct symbolsx, y in X ;

2. uniquely decipherable if the equality

C(x1) . . . C(xn) = C(y1) . . . C(ym)

for somex1, . . . , xn, y1, . . . , ym in X implies

n = m and xj = yj, j = 1, . . . , n.
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3. prefix (or to have the prefix property) if for any symbolx in X , no prefix of
C(x) is a codeword for some other symbol inX .

Prefix codes are also known as instantaneous codes. We denote the collection
of all prefix codes byCPref .

Length of codes

Given a codeC : X → B?, let `C(x) denote the length of the binary code-
wordC(x) associated with the symbolx in X . Given a sourceX = (X ,p), the
expected codeword length of the codeC : X → B? is given by

L(C;p) := E [`C(X)]

=
∑
x∈X

`C(x)p(x).(3)

Kraft Inequality
For any prefix codeC : X → B?, we have∑

x∈X

2−`C(x) ≤ 1.

Conversely, for any collection(`(x), x ∈ X ) of positive integers such that∑
x∈X

2−`(x) ≤ 1,

there exists a prefix codeC : X → B? such that

`C(x) = `(x), x ∈ X .

Shannon encoding
Set

`SH(x) = dlog2

1

p(x)
e, x ∈ X .

Since2log2 t = t for all t > 0, we find∑
x∈X

2−`SH(x) ≤
∑
x∈X

2− log2
1

p(x)

=
∑
x∈X

2log2 p(x)

=
∑
x∈X

p(x) = 1,(4)
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and there exists a prefix codeCSH : X → B? such that

`CSH
(x) = `SH(x), x ∈ X .(5)

Any code satsifying (5) is known as Shannon encoding.
Note that

L(CSH;p) =
∑
x∈X

p(x)`SH(x)

≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 1

)
= −

∑
x∈X

p(x) log2 p(x) +
∑
x∈X

p(x)

= H2(p) + 1.(6)

Shannon encoding comes from within one bit of source entropy!

Average code length and entropy
Consider a prefix codeC : X → B?. Introduce the pmfqC onX given by

qC(x) =
2−`C(x)

Σ(C)
, x ∈ X

where
Σ(C) =

∑
x∈X

2−`C(x).

We have

L(C;p)−H2(p) = D(p‖qC) + log2

(
1

Σ(C)

)
(7)

so that
L(C;p) ≥ H2(p)

sinceD(p‖qC) ≥ 0 andΣ(C) ≤ 1 by the Kraft inequality. Equality holds if and
only if D(p‖qC) = 0 andΣ(C) = 1. In other words, equality holds if and only if
there exists positive integers(n(x), x ∈ X ) such that

p(x) = 2−n(x), x ∈ X .

A proof of (7)
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L(C;p) =
∑
x∈X

`C(x)p(x)

= −
∑
x∈X

p(x) log2

(
2−`C(x)

)
= −

∑
x∈X

p(x) log2

(
2−`C(x)

Σ(C)
· Σ(C)

)
= −

∑
x∈X

p(x) log2

(
qC(x)

p(x)
· p(x)Σ(C)

)
= −

∑
x∈X

p(x)

(
log2

(
qC(x)

p(x)

)
+ log2 p(x) + log2 Σ(C)

)
= −

∑
x∈X

p(x) log2

(
qC(x)

p(x)

)
−
∑
x∈X

p(x) log2 p(x)− log2 Σ(C).

Source coding Theorem (Shannon 1948)
The bounds

H2(p) ≤ Lmin(p) ≤ H2(p) + 1(8)

hold where
Lmin(p) := min (L(C;p) : C ∈ CPref) .

Moreover,
Lmin(p) = H2(p)

if and only if there exist positive integers(n(x), x ∈ X )

p(x) = 2−n(x), x ∈ X .

Reaching entropy
It is possible to construct examples of sources for which the upper bound in (8) is
tight, i.e., for everyε in (0, 1), there exists a pmfpε onX such that

H2(pε) + 1− ε ≤ Lmin(pε) ≤ H2(pε) + 1

LetC?
ε : X → B? denote the corresponding optimal prefix code, i.e.,

Lmin(pε) = E
[
`C?ε (X)

]
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Now consider thenth extension(X n,pε,n) of this source. It seems reason-
able to encode the symbolX1, . . . , Xn according to the optimal prefix codeC?

ε ,
resulting in the concatenated binary codeword

C?
ε (X1) . . . C?

ε (Xn),

with length
n∑
k=1

`C?ε (Xk).

As a result, the expected codeword length is simply

n∑
k=1

E

[
`C?ε (Xk)

]
,

so that

n (H2(pε) + 1− ε) ≤
n∑
k=1

E

[
`C?ε (Xk)

]
≤ n (H2(pε) + 1) .

As a result, theexpected codeword length per symbolsatisfies

H2(pε) + 1− ε ≤ 1

n

n∑
k=1

E

[
`C?ε (Xk)

]
≤ H2(pε) + 1.

In other words, in this situation a deviation from the entropy bound of close to
n bits will occur, a discrepancy that will grow large withn. Equivalently, this
reflected in the expected codeword length per symbol being almost one bit away
from the netropy of the source. A natural question then arises as to whether this
can be improved. That is indeed so is now discussed:

Consider a finite sourceX = (X ,p). Recall thatCSH denotes any prefix code
for this source which implements Shannon encoding, i.e.,

`CSH (x) =
⌈
log2

1

p(x)

⌉
, x ∈ X .

Earlier we showed the bounds

H2(p) ≤ E [`CSH (X)] ≤ H2(p) + 1.(9)
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Now, for a givenn = 2, . . ., let Cn,SH denote any prefix code which imple-
ments Shannon encoding for thenth extension(X n,pn) of this source. Applying
the bounds (9) to this source we get

H2(pn) ≤ E
[
`Cn,SH

(X)
]
≤ H2(pn) + 1,(10)

or equivalently,

nH2(p) ≤ E
[
`Cn,SH

(X)
]
≤ nH2(p) + 1.(11)

Turning to the expected codeword length per symbol, we conclude that

H2(p) ≤ E
[
`Cn,SH

(X)

n

]
≤ H2(p) +

1

n
.(12)

It is now immediate to see that

lim
n→∞

E

[
`Cn,SH

(X)

n

]
= H2(p).

Entropy can be reached (in an asymptotic sense).
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The more likely the symbol, the shorter its description
Consider a prefix codeC : X → B?. Define a new codeC ′ : X → B? as follows:
Pick distinctx andy in X , and set

C ′(z) =


C(z) if z 6= x, y

C(y) if z = x

C(x) if z = y

Obviously,

`C′(z) =


`C(z) if z 6= x, y

`C(y) if z = x

`C(x) if z = y

so that

L(C;p)− L(C ′;p) =
∑
z∈X

`C(z)p(z)−
∑
z∈X

`C′(z)p(z)

= (`C(x)p(x) + `C(y)p(y))− (`C(y)p(x) + `C(x)p(y))

= (`C(x)− `C(y)) p(x) + (`C(y)− `C(x)) p(y)

= (`C(x)− `C(y)) (p(x)− p(y)) .

In short, ifp(y) < p(x), thenL(C;p) ≤ L(C ′;p) if and only if `C(x) ≤ `C(y)
– In other words,C is preferable toC ′ if p(x) ≤ p(y). Note thatC ′ is a prefix
code ifC is a prefix code. This is a simple consequence of the Kraft inequality.

Iterating this step leads to the following conclusion: With the symbols in the
alphabetX relabeled so that

p(M) ≤ p(M − 1) ≤ . . . ≤ p(2) ≤ p(1),

any optimal (prefix) codeC : X → B? necessarily satisfies

`C(1) ≤ `C(2) ≤ . . . ≤ `C(M − 1) ≤ `C(M).

Reduction step behind Huffman encoding
Consider a codeC : X → B? with the following property: There exist distinct
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symbolsx andy in X such that their codewords differ only in their last bit, i.e.,
for somè = 1, 2, . . ., we have

C(x) = (b1, . . . , b`, 1) and C(y) = (b1, . . . , b`, 0)

with b1, . . . , b` in {0, 1}.
With the sourceX = (X ,p), we associate a new sourceX ′ = (X ′,p′) as

follows: The new alphabetX ′ is obtained by combining the two symbolsx andy,
i.e.,

X ′ := (X − {x, y}) ∪ {?}

where? denotes the new symbol obtained by combiningx andy. Next, the pmf
p′ onX ′ is naturally derived fromp, namely

p′(z) =


p(z) if z 6= x, y

p(x) + p(y) if z = ?.

With C we now associate a new codeC ′ : X ′ → B? for this new sourceX ′ =
(X ′,p′) given by

C ′(z) =


C(z) if z 6= x, y

(b1, . . . , b`) if z = ?.

Therefore,

`C′(z) =


`C(z) if z 6= x, y

` if z = ?.

With these definitions,

L(C ′,p′) =
∑
z∈X ′

`C′(z)p′(z)

=
∑

z∈X−{x,y}

`C′(z)p′(z) + `C′(?)p
′(?)

=
∑

z∈X−{x,y}

`C(z)p(z) + ` (p(x) + p(y))

=
∑

z∈X−{x,y}

`C(z)p(z) + `p(x) + `p(y)
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=
∑

z∈X−{x,y}

`C(z)p(z) + (`C(x)− 1) p(x) + (`C(y)− 1) p(y)

=
∑
z∈X

`C(z)p(z)− (p(x) + p(y)) .

In short,
L(C ′,p′) = L(C,p)− (p(x) + p(y)) .(13)

As a consequence, if the optimal prefix code for the new sourceX ′ = (X ′,p′)
were known, then the optimal prefix code for the original sourceX = (X ,p)
would be easily available.

Properties of optimal prefix codes
For notational convenience, assume that the symbols in the alphabetX are rela-
beled so that

p(M) ≤ p(M − 1) ≤ . . . ≤ p(2) ≤ p(1)

with |X | = M .

1. If a (prefix) codeC : X → B? is optimal, then necessarily

`C(1) ≤ `C(2) ≤ . . . ≤ `C(M − 1) ≤ `C(M)

2. If the prefix codeC : X → B? is optimal, then necessarily

`C(M − 1) = `C(M)

3. The optimal prefix codeC : X → B? can always be selected so thatC(M−
1) andC(M) differ only in the last bit, i.e., ifC(M − 1) = (a1, . . . , a`) and
C(M) = (b1, . . . , b`) where` = `C(M − 1) = `C(M), then

ak = bk, k = 1, . . . , `− 1.


