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COMMUNICATIONS SYSTEMS
DATA COMPRESSION:
Reminder

With a > 0, the logarithm in base of = > 0, denotedog, =, is the unique scalar
such that

T = a'%%",

With x = 0 we tdopt he usual convention of definilg, + = —oco, andz log, © =
0 — The latter follows by an easy continuity argument since

lim 1 =
iﬁ)m: og,r =0,

say by L'Hospital's rule. Withe > 0 andb > 0, it is always the case that
log, x = (log, a) -log, z, x>0

Throughoutlog, x is logarithm in base of x > 0, and we useéog x for the
natural logarithm which correspondsdo-= e.

Finite sources
Let X’ denote a finite set, hereafter called #ighabet and we refer to an element
x of X as asymbol A probability mass function (pmfp = (p(x), x € X) on X

is any collection of scalars indexed By such that

0<plz)<1l, zeX with Zp(x) = 1.

TeX

A source is simply a paitX’, p) whereX’ is a finite alphabet ang is a pmf on
X. Itis sometimes convenient to refer to such a source by the notstien X', p)
where theX-valued random variabl& : 2 — X’ is defined on some probability
space (2, F,P) such that

(1) PX =zx]=p(z), zeX.

In short, we can think op(x) as the likelihood that the source generates symbol
x. In principle we could have(x) = 0 for someof the values of: in X.
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Extensions of a source
Consider a sourceY, p) whereX is a finite alphabet ang is a pmf onX’. For

eachn = 1,2,..., its n'"* extension is the sourget™, p,) where the pmf,, on
X" is given by
(2) pn(x") = Hp(xi), " = (x1,...,2,) € X"

=1
It is often useful to view this:** extension in terms of ai’”-valued random
variableX™ : () — X defined on some probability spage, 7, P) such that
P[X" =" = p,(z"), x" € X"
where
X" = (Xy,..., Xn).
Under (2) it is easy to check that

PIX"=a"=[[P[Xi=a], a"=(z1,...,2,)€X"
=1
In other words, theY-valued random variableX, ..., X,, are independent and
identically distributed (i.i.d.) random variables, each distributed according to the
pmf p.

Divergence
With a > 0, the divergence (in basg between the pmfp andg on X is defined

by
Da(pllg) == =) p(x)log, ( (g) :

reX

The basic bound
D.(pllg) = 0
holds with equality if and only ip = q.

Entropy
With a > 0, the entropy (in base) of the pmfp on X is defined by

== p(x)log, p(

zeX
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This is sometimes denotéed, (X, p) or H,(X) where theY'-valued random vari-
ableX : Q — X is defined on some probability spage, 7, P) such that (1)
holds.
The basic bounds
0 < H,(p) < log, |X|

hold, and we have

1. The lower bound is achieved if and only if the pmis degenerate, i.e.,

H,(p) =0 if andonlyif p(x) =1 forsomez € X

2. The upper bound is achieved if and only if the gmig the uniform pmf on
X, l.e.,

H.(p) =log, |X| ifandonlyifp(z) ==, z€di.

Compression codes

Let B* denote the collection of all binary words witimite length, i.e.,

A binary compressiorcode, hereafter simply a code, for aftvalued source is
any mapping
C:X — B~

For eachz in X', C(z) is known as theodewordassociated witlx underC'. It
is customary to refer to the collectigiC'(z), x € X'} of all codewords as the
codebook foiC, and to identify it withC'.

Some terminology: A cod€' : X — B* is said to be

1. non-singular itC(z) # C(y) for any pair of distinct symbols, y in X’;
2. uniquely decipherable if the equality
C(z1)...C(x) =C(y1) ... C(Ym)
forsomezxy,...,z,, 41, ..., Y, In X iMmplies

n=m and xz;=y;, j=1,...,n.
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3. prefix (or to have the prefix property) if for any symhah X', no prefix of
C'(z) is a codeword for some other symbolin

Prefix codes are also known as instantaneous codes. We denote the collection
of all prefix codes byp,s.

Length of codes

Given a code” : X — B*, let /- (z) denote the length of the binary code-
word C'(z) associated with the symbolin X'. Given a sourceX = (X, p), the
expected codeword length of the cade X — B* is given by

L(C;p) = Ello(X)]
3) = Y le(@)p(x).

zeX

Kraft Inequality
For any prefix cod€’ : X — B*, we have

Z 9—Lo(z) <1.
reX
Conversely, for any collectiofY(z), = € X') of positive integers such that

Z 9—L(x) <1,

zeX
there exists a prefix codé : X — B* such that

lo(x) =L(z), x€X.

Shannon encoding
Set

lsu(x) = [log, I%L reX.

Since2log:t — ¢ for all t > 0, we find

Z 9~tsu(®) < Z o~ log, o)

reX rzeX

_ Z glogs p(z)

TeEX

(4) = > pla)=1,

TeEX
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and there exists a prefix codgy : X — B* such that

(5) KCSH(ZL’) = ESH(ZL‘), reX.
Any code satsifying (5) is known as Shannon encoding.
Note that
L(Csu;p) = > p(x)lsu(x)
zeX
1
< p(x (log — + 1)
= = pla)logyp(z) + Y pla)
TEX TeEX

Shannon encoding comes from within one bit of source entropy!

Average code length and entropy
Consider a prefix cod€' : X — B*. Introduce the pm§, on X’ given by

9—tc(x)
qo(z) = S(0) re X
where
D(C) =) 27fel),
rzeX

We have .
(7) L(C;p) — Ha(p) = D(pllgc) + log, (m)
so that

L(C;p) > Hy(p)

sinceD(pl||lg-) > 0 andX(C') < 1 by the Kraft inequality. Equality holds if and
only if D(pllq.) = 0 andX(C) = 1. In other words, equality holds if and only if
there exists positive integefs(z), = € &X') such that

p(z) =27"@  rex.

A proof of (7)
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= —Zp(x)log (2 ZC(:”))
9—Lo(x)
= ~Sron ey ¥O)
— = ptonion, (o)
= = S00te) (1o (58 1ot + 102, 2(0)
= = S platog, (1)) = 3 pla) o ple) ~ o, S(C).

Source coding Theorem (Shannon 1948)

The bounds
(8) Hs(p) < Luin(p) < Ha(p) +1
hold where

Liin(p) := min (L(C;p) : C € Cprer) -
Moreover,

Lunin(p) = Ha2(p)
if and only if there exist positive intege(s(z), x € X)

p(z) =270 rex.
Reaching entropy

It is possible to construct examples of sources for which the upper bound in (8) is
tight, i.e., for every in (0, 1), there exists a pmp. on X’ such that

H2<pa) +1—¢ < Lmin(pg) < H2(p5) +1

LetCr : X — B* denote the corresponding optimal prefix code, i.e.,

Lmin(ps) =E [KCS* (X)}
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Now consider thex'" extension(X™, p,,,) of this source. It seems reason-
able to encode the symbd(,, ..., X,, according to the optimal prefix code’,
resulting in the concatenated binary codeword

CI(Xq) ... CZ(Xy),
with length
> les (Xy).
k=1

As a result, the expected codeword length is simply

anE [lex (Xh)]

so that

n(Hs(p.)+1—¢) <Y El[le:(Xy)] <n(Ha(p.)+1).
k=1

As a result, theexpected codeword length per symbalisfies

n

Hy(p.)+1—-¢e< %ZE [lcs(Xk)] < Ha(p.) + 1.

In other words, in this situation a deviation from the entropy bound of close to
n bits will occur, a discrepancy that will grow large with Equivalently, this
reflected in the expected codeword length per symbol being almost one bit away
from the netropy of the source. A natural question then arises as to whether this
can be improved. That is indeed so is now discussed:

Consider a finite sourc& = (X, p). Recall thatCsy denotes any prefix code
for this source which implements Shannon encoding, i.e.,

log, (z) = [1og2 Iﬁ-" reX.

Earlier we showed the bounds

() Hy(p) < E[los, (X)] < Ha(p) + 1.
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Now, for a givenn = 2,.. ., let C, gy denote any prefix code which imple-
ments Shannon encoding for th® extension X", p, ) of this source. Applying
the bounds (9) to this source we get

(10) Hy(p,) < E [le, 3u(X)] < Ha(p,) + 1,
or equivalently,
(11) nHy(p) <E [€CMSH (X)} < nHy(p) + 1.

Turning to the expected codeword length per symbol, we conclude that

14 X 1
(12) Hy(p) <E {%()} < Hy(p) + .
It is now immediate to see that
14 X
lim E {C"LH] = Hy(p).
n—oo n

Entropy can be reached (in an asymptotic sense).
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The more likely the symbol, the shorter its description
Consider a prefix cod€' : X — B*. Define a new codé” : X — B* as follows:
Pick distinctz andy in X', and set

(( O(z) if z# 2,y

C'(z) =] Cly) if z=ux

[ C(z) if 2=y
Obviously,
((lo(2) if 242,y
len(2) =< Llo(y) If z=2
[ lo(x) if 2=y
so that
L(C;p) — L(C';p) = Y le(2)p(z) = > Lor(2)p(2)

zeX zEX

= (lo(z)p(x) + Lc(y)p(y) — (Le(y)p(z) + Lo(2)p(y))
= (le(z) = Lo(y)) p(x) + (be(y) — Le(x)) p(y)
= (lo(r) = Lo(y)) (p(x) —p(y)) -

In short, ifp(y) < p(x), thenL(C;p) < L(C’;p) ifand only if (o (z) < lc(y)
— In other words(' is preferable ta”” if p(z) < p(y). Note thatC’ is a prefix
code ifC' is a prefix code. This is a simple consequence of the Kraft inequality.
Iterating this step leads to the following conclusion: With the symbols in the
alphabett relabeled so that
p(M) <p(M —1) <... <p(2) <p(1),

any optimal (prefix) codé€' : X — B* necessarily satisfies
le(1) <le(2) < ... <Ulo(M —1) < la(M).

Reduction step behind Huffman encoding
Consider a cod€’ : X — B* with the following property: There exist distinct




(©2007-2012 by Armand M. Makowski 10

symbolsz andy in X such that their codewords differ only in their last bit, i.e.,
forsomel/ = 1,2, ..., we have

C(x) = (by,...,b,1) and C(y) = (by,...,bs,0)

with by, ..., b, in {0,1}.

With the sourceX = (X, p), we associate a new sourég€ = (X', p’) as
follows: The new alphabet” is obtained by combining the two symbalandy,
ie.,

X = (X~ {z,y}) U {*}
wherex denotes the new symbol obtained by combiningndy. Next, the pmf
p’ on X' is naturally derived fronp, namely

{M@ if 242y

p(z) +ply) if z=x

P(2) =

With C' we now associate a new codg : X’ — B* for this new sourceX’ =
(X", p') given by

C(z) if z#4x,y
C'(2) =
(bl,...,bg) if 2=
Therefore,
lo(z) if =#ay
ﬁc/(z) =
14 if z=x.

With these definitions,

L p) = Y te()p(:)
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= Y Le(2)p(z) + (o(z) = 1) plx) + (Lely) — 1) p(y)

zeX—{z,y}
= Y le(2)p(2) = (p(x) + p(y)).
In short,
(13) L(C",p') = L(C,p) — (p(x) + p(y)) -

As a consequence, if the optimal prefix code for the new soli'‘ce- (X', p’)
were known, then the optimal prefix code for the original soukce= (X, p)
would be easily available.

Properties of optimal prefix codes
For notational convenience, assume that the symbols in the alpkahet rela-
beled so that

p(M) <p(M—1) <...<p(2) <p(1)

with |X| = M.
1. If a (prefix) codeC” : X — B* is optimal, then necessarily

Lo(1) < Lo(2) < ... < Lo(M —1) < lo(M)

2. If the prefix code” : X — B* is optimal, then necessarily

Ce(M —1) = bo(M)

3. The optimal prefix codé€' : X — B* can always be selected so tligt\/ —
1) andC'(M) differ only in the last bit, i.e., iC' (M — 1) = (ay, ..., a,) and
C(M) = (by,...,by)) wherel = l(c(M — 1) = Lo(M), then

ak:bk, kzl,...,f—l.




