ENEE 420
FALL 2012

COMMUNICATIONS SYSTEMS

DATA COMPRESSION:

Reminder

With $a>0$, the logarithm in base a of $x>0$, denoted $\log _{a} x$, is the unique scalar such that

$$
x=a^{\log _{a} x} .
$$

With $x=0$ we tdopt he usual convention of defining $\log _{a} x=-\infty$, and $x \log _{a} x=$ 0 - The latter follows by an easy continuity argument since

$$
\lim _{x \downarrow 0} x \log _{a} x=0,
$$

say by L'Hospital's rule. With $a>0$ and $b>0$, it is always the case that

$$
\log _{b} x=\left(\log _{b} a\right) \cdot \log _{a} x, \quad x>0
$$

Throughout $\log _{2} x$ is \log arithm in base 2 of $x>0$, and we use $\log x$ for the natural logarithm which corresponds to $a=e$.

Finite sources

Let \mathcal{X} denote a finite set, hereafter called the alphabet, and we refer to an element x of \mathcal{X} as a symbol. A probability mass function (pmf) $\boldsymbol{p}=(p(x), x \in \mathcal{X}$) on \mathcal{X} is any collection of scalars indexed by \mathcal{X} such that

$$
0<p(x) \leq 1, x \in \mathcal{X} \quad \text { with } \quad \sum_{x \in \mathcal{X}} p(x)=1
$$

A source is simply a pair $(\mathcal{X}, \boldsymbol{p})$ where \mathcal{X} is a finite alphabet and \boldsymbol{p} is a pmf on \mathcal{X}. It is sometimes convenient to refer to such a source by the notation $X=(\mathcal{X}, \boldsymbol{p})$ where the \mathcal{X}-valued random variable $X: \Omega \rightarrow \mathcal{X}$ is defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$
\begin{equation*}
\mathbb{P}[X=x]=p(x), \quad x \in \mathcal{X} . \tag{1}
\end{equation*}
$$

In short, we can think of $p(x)$ as the likelihood that the source generates symbol x. In principle we could have $p(x)=0$ for some of the values of x in \mathcal{X}.

Extensions of a source

Consider a source $(\mathcal{X}, \boldsymbol{p})$ where \mathcal{X} is a finite alphabet and \boldsymbol{p} is a pmf on \mathcal{X}. For each $n=1,2, \ldots$, its $n^{\text {th }}$ extension is the source $\left(\mathcal{X}^{n}, \boldsymbol{p}_{n}\right)$ where the pmf \boldsymbol{p}_{n} on \mathcal{X}^{n} is given by

$$
\begin{equation*}
p_{n}\left(\boldsymbol{x}^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right), \quad \boldsymbol{x}^{n}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n} \tag{2}
\end{equation*}
$$

It is often useful to view this $n^{\text {th }}$ extension in terms of an \mathcal{X}^{n}-valued random variable $\boldsymbol{X}^{n}: \Omega \rightarrow \mathcal{X}^{n}$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$
\mathbb{P}\left[\boldsymbol{X}^{n}=\boldsymbol{x}^{n}\right]=p_{n}\left(\boldsymbol{x}^{n}\right), \quad \boldsymbol{x}^{n} \in \mathcal{X}^{n} .
$$

where

$$
\boldsymbol{X}^{n}=\left(X_{1}, \ldots, X_{n}\right) .
$$

Under (2) it is easy to check that

$$
\mathbb{P}\left[\boldsymbol{X}^{n}=\boldsymbol{x}^{n}\right]=\prod_{i=1}^{n} \mathbb{P}\left[X_{i}=x_{i}\right], \quad \boldsymbol{x}^{n}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}
$$

In other words, the \mathcal{X}-valued random variables X_{1}, \ldots, X_{n} are independent and identically distributed (i.i.d.) random variables, each distributed according to the pmf \boldsymbol{p}.

Divergence

With $a>0$, the divergence (in base a) between the pmfs \boldsymbol{p} and \boldsymbol{q} on \mathcal{X} is defined by

$$
D_{a}(\boldsymbol{p} \| \boldsymbol{q}):=-\sum_{x \in \mathcal{X}} p(x) \log _{a}\left(\frac{q(x)}{p(x)}\right) .
$$

The basic bound

$$
D_{a}(\boldsymbol{p} \| \boldsymbol{q}) \geq 0
$$

holds with equality if and only if $\boldsymbol{p}=\boldsymbol{q}$.

Entropy

With $a>0$, the entropy (in base a) of the pmf \boldsymbol{p} on \mathcal{X} is defined by

$$
H_{a}(\boldsymbol{p}):=-\sum_{x \in \mathcal{X}} p(x) \log _{a} p(x)
$$

This is sometimes denoted $H_{a}(\mathcal{X}, \boldsymbol{p})$ or $H_{a}(X)$ where the \mathcal{X}-valued random variable $X: \Omega \rightarrow \mathcal{X}$ is defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that (1) holds.

The basic bounds

$$
0 \leq H_{a}(\boldsymbol{p}) \leq \log _{a}|\mathcal{X}|
$$

hold, and we have

1. The lower bound is achieved if and only if the $\operatorname{pmf} \boldsymbol{p}$ is degenerate, i.e.,

$$
H_{a}(\boldsymbol{p})=0 \quad \text { if and only if } p(x)=1 \quad \text { for some } x \in \mathcal{X}
$$

2. The upper bound is achieved if and only if the pmf \boldsymbol{p} is the uniform pmf on \mathcal{X}, i.e.,

$$
H_{a}(\boldsymbol{p})=\log _{a}|\mathcal{X}| \quad \text { if and only if } p(x)=\frac{1}{|\mathcal{X}|}, \quad x \in \mathcal{X}
$$

Compression codes

Let \mathcal{B}^{\star} denote the collection of all binary words with finite length, i.e.,

$$
\mathcal{B}^{\star}=\cup_{n=1}^{\infty}\{0,1\}^{n} .
$$

A binary compression code, hereafter simply a code, for an \mathcal{X}-valued source is any mapping

$$
C: \mathcal{X} \rightarrow \mathcal{B}^{\star}
$$

For each x in $\mathcal{X}, C(x)$ is known as the codeword associated with x under C. It is customary to refer to the collection $\{C(x), x \in \mathcal{X}\}$ of all codewords as the codebook for C, and to identify it with C.

Some terminology: A code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ is said to be

1. non-singular if $C(x) \neq C(y)$ for any pair of distinct symbols x, y in \mathcal{X};
2. uniquely decipherable if the equality

$$
C\left(x_{1}\right) \ldots C\left(x_{n}\right)=C\left(y_{1}\right) \ldots C\left(y_{m}\right)
$$

for some $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ in \mathcal{X} implies

$$
n=m \quad \text { and } \quad x_{j}=y_{j}, j=1, \ldots, n .
$$

3. prefix (or to have the prefix property) if for any symbol x in \mathcal{X}, no prefix of $C(x)$ is a codeword for some other symbol in \mathcal{X}.

Prefix codes are also known as instantaneous codes. We denote the collection of all prefix codes by $\mathcal{C}_{\text {Pref }}$.

Length of codes

Given a code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$, let $\ell_{C}(x)$ denote the length of the binary codeword $C(x)$ associated with the symbol x in \mathcal{X}. Given a source $X=(\mathcal{X}, \boldsymbol{p})$, the expected codeword length of the code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ is given by

$$
\begin{align*}
L(C ; \boldsymbol{p}) & :=\mathbb{E}\left[\ell_{C}(X)\right] \\
& =\sum_{x \in \mathcal{X}} \ell_{C}(x) p(x) . \tag{3}
\end{align*}
$$

Kraft Inequality

For any prefix code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$, we have

$$
\sum_{x \in \mathcal{X}} 2^{-\ell_{C}(x)} \leq 1 .
$$

Conversely, for any collection $(\ell(x), x \in \mathcal{X})$ of positive integers such that

$$
\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1,
$$

there exists a prefix code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ such that

$$
\ell_{C}(x)=\ell(x), \quad x \in \mathcal{X} .
$$

Shannon encoding
Set

$$
\ell_{\mathrm{SH}}(x)=\left\lceil\log _{2} \frac{1}{p(x)}\right\rceil, \quad x \in \mathcal{X} .
$$

Since $2^{\log _{2} t}=t$ for all $t>0$, we find

$$
\begin{align*}
\sum_{x \in \mathcal{X}} 2^{-\ell_{\mathrm{SH}}(x)} & \leq \sum_{x \in \mathcal{X}} 2^{-\log _{2} \frac{1}{p(x)}} \\
& =\sum_{x \in \mathcal{X}} 2^{\log _{2} p(x)} \\
& =\sum_{x \in \mathcal{X}} p(x)=1, \tag{4}
\end{align*}
$$

and there exists a prefix code $C_{\mathrm{SH}}: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ such that

$$
\begin{equation*}
\ell_{C_{\mathrm{SH}}}(x)=\ell_{\mathrm{SH}}(x), \quad x \in \mathcal{X} . \tag{5}
\end{equation*}
$$

Any code satsifying (5) is known as Shannon encoding.
Note that

$$
\begin{align*}
L\left(C_{\mathrm{SH}} ; \boldsymbol{p}\right) & =\sum_{x \in \mathcal{X}} p(x) \ell_{\mathrm{SH}}(x) \\
& \leq \sum_{x \in \mathcal{X}} p(x)\left(\log _{2} \frac{1}{p(x)}+1\right) \\
& =-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x)+\sum_{x \in \mathcal{X}} p(x) \\
& =H_{2}(\boldsymbol{p})+1 \tag{6}
\end{align*}
$$

Shannon encoding comes from within one bit of source entropy!

Average code length and entropy

Consider a prefix code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$. Introduce the pmf \boldsymbol{q}_{C} on \mathcal{X} given by

$$
q_{C}(x)=\frac{2^{-\ell_{C}(x)}}{\Sigma(C)}, \quad x \in \mathcal{X}
$$

where

$$
\Sigma(C)=\sum_{x \in \mathcal{X}} 2^{-\ell_{C}(x)}
$$

We have

$$
\begin{equation*}
L(C ; \boldsymbol{p})-H_{2}(\boldsymbol{p})=D\left(\boldsymbol{p} \| \boldsymbol{q}_{C}\right)+\log _{2}\left(\frac{1}{\Sigma(C)}\right) \tag{7}
\end{equation*}
$$

so that

$$
L(C ; \boldsymbol{p}) \geq H_{2}(\boldsymbol{p})
$$

since $D\left(\boldsymbol{p} \| \boldsymbol{q}_{C}\right) \geq 0$ and $\Sigma(C) \leq 1$ by the Kraft inequality. Equality holds if and only if $D\left(\boldsymbol{p} \| \boldsymbol{q}_{C}\right)=0$ and $\Sigma(C)=1$. In other words, equality holds if and only if there exists positive integers $(n(x), x \in \mathcal{X})$ such that

$$
p(x)=2^{-n(x)}, \quad x \in \mathcal{X}
$$

A proof of (7)

$$
\begin{aligned}
L(C ; \boldsymbol{p}) & =\sum_{x \in \mathcal{X}} \ell_{C}(x) p(x) \\
& =-\sum_{x \in \mathcal{X}} p(x) \log _{2}\left(2^{-\ell_{C}(x)}\right) \\
& =-\sum_{x \in \mathcal{X}} p(x) \log _{2}\left(\frac{2^{-\ell_{C}(x)}}{\Sigma(C)} \cdot \Sigma(C)\right) \\
& =-\sum_{x \in \mathcal{X}} p(x) \log _{2}\left(\frac{q_{C}(x)}{p(x)} \cdot p(x) \Sigma(C)\right) \\
& =-\sum_{x \in \mathcal{X}} p(x)\left(\log _{2}\left(\frac{q_{C}(x)}{p(x)}\right)+\log _{2} p(x)+\log _{2} \Sigma(C)\right) \\
& =-\sum_{x \in \mathcal{X}} p(x) \log _{2}\left(\frac{q_{C}(x)}{p(x)}\right)-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x)-\log _{2} \Sigma(C)
\end{aligned}
$$

Source coding Theorem (Shannon 1948)

The bounds

$$
\begin{equation*}
H_{2}(\boldsymbol{p}) \leq L_{\min }(\boldsymbol{p}) \leq H_{2}(\boldsymbol{p})+1 \tag{8}
\end{equation*}
$$

hold where

$$
L_{\min }(\boldsymbol{p}):=\min \left(L(C ; \boldsymbol{p}): C \in \mathcal{C}_{\text {Pref }}\right)
$$

Moreover,

$$
L_{\min }(\boldsymbol{p})=H_{2}(\boldsymbol{p})
$$

if and only if there exist positive integers $(n(x), x \in \mathcal{X})$

$$
p(x)=2^{-n(x)}, \quad x \in \mathcal{X}
$$

Reaching entropy

It is possible to construct examples of sources for which the upper bound in (8) is tight, i.e., for every ϵ in $(0,1)$, there exists a pmf $\boldsymbol{p}_{\varepsilon}$ on \mathcal{X} such that

$$
H_{2}\left(\boldsymbol{p}_{\varepsilon}\right)+1-\varepsilon \leq L_{\min }\left(\boldsymbol{p}_{\varepsilon}\right) \leq H_{2}\left(\boldsymbol{p}_{\varepsilon}\right)+1
$$

Let $C_{\varepsilon}^{\star}: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ denote the corresponding optimal prefix code, i.e.,

$$
L_{\min }\left(\boldsymbol{p}_{\varepsilon}\right)=\mathbb{E}\left[\ell_{C_{\varepsilon}^{\star}}(X)\right]
$$

Now consider the $n^{\text {th }}$ extension $\left(\mathcal{X}^{n}, \boldsymbol{p}_{\varepsilon, n}\right)$ of this source. It seems reasonable to encode the symbol X_{1}, \ldots, X_{n} according to the optimal prefix code C_{ε}^{\star}, resulting in the concatenated binary codeword

$$
C_{\varepsilon}^{\star}\left(X_{1}\right) \ldots C_{\varepsilon}^{\star}\left(X_{n}\right)
$$

with length

$$
\sum_{k=1}^{n} \ell_{C_{\varepsilon}^{\star}}\left(X_{k}\right)
$$

As a result, the expected codeword length is simply

$$
\sum_{k=1}^{n} \mathbb{E}\left[\ell_{C_{\varepsilon}^{*}}\left(X_{k}\right)\right]
$$

so that

$$
n\left(H_{2}\left(\boldsymbol{p}_{\varepsilon}\right)+1-\varepsilon\right) \leq \sum_{k=1}^{n} \mathbb{E}\left[\ell_{C_{\varepsilon}^{\star}}\left(X_{k}\right)\right] \leq n\left(H_{2}\left(\boldsymbol{p}_{\varepsilon}\right)+1\right) .
$$

As a result, the expected codeword length per symbol satisfies

$$
H_{2}\left(\boldsymbol{p}_{\varepsilon}\right)+1-\varepsilon \leq \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\ell_{C_{\varepsilon}^{\star}}\left(X_{k}\right)\right] \leq H_{2}\left(\boldsymbol{p}_{\varepsilon}\right)+1 .
$$

In other words, in this situation a deviation from the entropy bound of close to n bits will occur, a discrepancy that will grow large with n. Equivalently, this reflected in the expected codeword length per symbol being almost one bit away from the netropy of the source. A natural question then arises as to whether this can be improved. That is indeed so is now discussed:

Consider a finite source $X=(\mathcal{X}, \boldsymbol{p})$. Recall that $C_{\text {SH }}$ denotes any prefix code for this source which implements Shannon encoding, i.e.,

$$
\ell_{C_{S H}}(x)=\left\lceil\log _{2} \frac{1}{p(x)}\right\rceil, \quad x \in \mathcal{X}
$$

Earlier we showed the bounds

$$
\begin{equation*}
H_{2}(\boldsymbol{p}) \leq \mathbb{E}\left[\ell_{C_{S H}}(X)\right] \leq H_{2}(\boldsymbol{p})+1 . \tag{9}
\end{equation*}
$$

Now, for a given $n=2, \ldots$, let $C_{n, \mathrm{SH}}$ denote any prefix code which implements Shannon encoding for the $n^{\text {th }}$ extension $\left(\mathcal{X}^{n}, \boldsymbol{p}_{n}\right)$ of this source. Applying the bounds (9) to this source we get

$$
\begin{equation*}
H_{2}\left(\boldsymbol{p}_{n}\right) \leq \mathbb{E}\left[\ell_{C_{n, \mathrm{SH}}}(X)\right] \leq H_{2}\left(\boldsymbol{p}_{n}\right)+1, \tag{10}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
n H_{2}(\boldsymbol{p}) \leq \mathbb{E}\left[\ell_{C_{n, \mathrm{SH}}}(X)\right] \leq n H_{2}(\boldsymbol{p})+1 . \tag{11}
\end{equation*}
$$

Turning to the expected codeword length per symbol, we conclude that

$$
\begin{equation*}
H_{2}(\boldsymbol{p}) \leq \mathbb{E}\left[\frac{\ell_{C_{n, \mathrm{SH}}}(X)}{n}\right] \leq H_{2}(\boldsymbol{p})+\frac{1}{n} . \tag{12}
\end{equation*}
$$

It is now immediate to see that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{\ell_{C_{n, \mathrm{SH}}}(X)}{n}\right]=H_{2}(\boldsymbol{p}) .
$$

Entropy can be reached (in an asymptotic sense).

The more likely the symbol, the shorter its description
Consider a prefix code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$. Define a new code $C^{\prime}: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ as follows: Pick distinct x and y in \mathcal{X}, and set

$$
C^{\prime}(z)= \begin{cases}C(z) & \text { if } z \neq x, y \\ C(y) & \text { if } z=x \\ C(x) & \text { if } z=y\end{cases}
$$

Obviously,

$$
\ell_{C^{\prime}}(z)= \begin{cases}\ell_{C}(z) & \text { if } z \neq x, y \\ \ell_{C}(y) & \text { if } z=x \\ \ell_{C}(x) & \text { if } z=y\end{cases}
$$

so that

$$
\begin{aligned}
L(C ; \boldsymbol{p})-L\left(C^{\prime} ; \boldsymbol{p}\right) & =\sum_{z \in \mathcal{X}} \ell_{C}(z) p(z)-\sum_{z \in \mathcal{X}} \ell_{C^{\prime}}(z) p(z) \\
& =\left(\ell_{C}(x) p(x)+\ell_{C}(y) p(y)\right)-\left(\ell_{C}(y) p(x)+\ell_{C}(x) p(y)\right) \\
& =\left(\ell_{C}(x)-\ell_{C}(y)\right) p(x)+\left(\ell_{C}(y)-\ell_{C}(x)\right) p(y) \\
& =\left(\ell_{C}(x)-\ell_{C}(y)\right)(p(x)-p(y)) .
\end{aligned}
$$

In short, if $p(y)<p(x)$, then $L(C ; \boldsymbol{p}) \leq L\left(C^{\prime} ; \boldsymbol{p}\right)$ if and only if $\ell_{C}(x) \leq \ell_{C}(y)$ - In other words, C is preferable to C^{\prime} if $p(x) \leq p(y)$. Note that C^{\prime} is a prefix code if C is a prefix code. This is a simple consequence of the Kraft inequality.

Iterating this step leads to the following conclusion: With the symbols in the alphabet \mathcal{X} relabeled so that

$$
p(M) \leq p(M-1) \leq \ldots \leq p(2) \leq p(1)
$$

any optimal (prefix) code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ necessarily satisfies

$$
\ell_{C}(1) \leq \ell_{C}(2) \leq \ldots \leq \ell_{C}(M-1) \leq \ell_{C}(M)
$$

Reduction step behind Huffman encoding
Consider a code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ with the following property: There exist distinct
symbols x and y in \mathcal{X} such that their codewords differ only in their last bit, i.e., for some $\ell=1,2, \ldots$, we have

$$
C(x)=\left(b_{1}, \ldots, b_{\ell}, 1\right) \quad \text { and } \quad C(y)=\left(b_{1}, \ldots, b_{\ell}, 0\right)
$$

with b_{1}, \ldots, b_{ℓ} in $\{0,1\}$.
With the source $X=(\mathcal{X}, \boldsymbol{p})$, we associate a new source $X^{\prime}=\left(\mathcal{X}^{\prime}, \boldsymbol{p}^{\prime}\right)$ as follows: The new alphabet \mathcal{X}^{\prime} is obtained by combining the two symbols x and y, i.e.,

$$
\mathcal{X}^{\prime}:=(\mathcal{X}-\{x, y\}) \cup\{\star\}
$$

where \star denotes the new symbol obtained by combining x and y. Next, the pmf \boldsymbol{p}^{\prime} on \mathcal{X}^{\prime} is naturally derived from \boldsymbol{p}, namely

$$
p^{\prime}(z)= \begin{cases}p(z) & \text { if } z \neq x, y \\ p(x)+p(y) & \text { if } z=\star\end{cases}
$$

With C we now associate a new code $C^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{B}^{\star}$ for this new source $X^{\prime}=$ ($\mathcal{X}^{\prime}, \boldsymbol{p}^{\prime}$) given by

$$
C^{\prime}(z)= \begin{cases}C(z) & \text { if } z \neq x, y \\ \left(b_{1}, \ldots, b_{\ell}\right) & \text { if } z=\star\end{cases}
$$

Therefore,

$$
\ell_{C^{\prime}}(z)= \begin{cases}\ell_{C}(z) & \text { if } z \neq x, y \\ \ell & \text { if } z=\star\end{cases}
$$

With these definitions,

$$
\begin{aligned}
L\left(C^{\prime}, \boldsymbol{p}^{\prime}\right) & =\sum_{z \in \mathcal{X}^{\prime}} \ell_{C^{\prime}}(z) p^{\prime}(z) \\
& =\sum_{z \in \mathcal{X}-\{x, y\}} \ell_{C^{\prime}}(z) p^{\prime}(z)+\ell_{C^{\prime}}(\star) p^{\prime}(\star) \\
& =\sum_{z \in \mathcal{X}-\{x, y\}} \ell_{C}(z) p(z)+\ell(p(x)+p(y)) \\
& =\sum_{z \in \mathcal{X}-\{x, y\}} \ell_{C}(z) p(z)+\ell p(x)+\ell p(y)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{z \in \mathcal{X}-\{x, y\}} \ell_{C}(z) p(z)+\left(\ell_{C}(x)-1\right) p(x)+\left(\ell_{C}(y)-1\right) p(y) \\
& =\sum_{z \in \mathcal{X}} \ell_{C}(z) p(z)-(p(x)+p(y))
\end{aligned}
$$

In short,

$$
\begin{equation*}
L\left(C^{\prime}, \boldsymbol{p}^{\prime}\right)=L(C, \boldsymbol{p})-(p(x)+p(y)) . \tag{13}
\end{equation*}
$$

As a consequence, if the optimal prefix code for the new source $X^{\prime}=\left(\mathcal{X}^{\prime}, \boldsymbol{p}^{\prime}\right)$ were known, then the optimal prefix code for the original source $X=(\mathcal{X}, \boldsymbol{p})$ would be easily available.

Properties of optimal prefix codes

\qquad
For notational convenience, assume that the symbols in the alphabet \mathcal{X} are relabeled so that

$$
p(M) \leq p(M-1) \leq \ldots \leq p(2) \leq p(1)
$$

with $|\mathcal{X}|=M$.

1. If a (prefix) code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ is optimal, then necessarily

$$
\ell_{C}(1) \leq \ell_{C}(2) \leq \ldots \leq \ell_{C}(M-1) \leq \ell_{C}(M)
$$

2. If the prefix code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ is optimal, then necessarily

$$
\ell_{C}(M-1)=\ell_{C}(M)
$$

3. The optimal prefix code $C: \mathcal{X} \rightarrow \mathcal{B}^{\star}$ can always be selected so that $C(M-$ $1)$ and $C(M)$ differ only in the last bit, i.e., if $C(M-1)=\left(a_{1}, \ldots, a_{\ell}\right)$ and $C(M)=\left(b_{1}, \ldots, b_{\ell}\right)$ where $\ell=\ell_{C}(M-1)=\ell_{C}(M)$, then

$$
a_{k}=b_{k}, \quad k=1, \ldots, \ell-1 .
$$

