
c©2007-2012 by Armand M. Makowski 1

ENEE 420
FALL 2012

COMMUNICATIONS SYSTEMS

ERROR CONTROL AND CODING:

GENERAL FACTS

Coding Theory is at the intersection of Algebra, Geometry and Probability
Theory.

Hamming spaces
We begin with some basic notions concerning Hamming spaces.

With positive integerp, we define the Hamming spaceHp of dimensionp
as the vector space{0, 1}p equipped with modulo-2 addition and multiplication.
More specifically, withx = (x1, . . . , xp) andy = (y1, . . . , yp) in Hp, we define
their addition as the vectorx+ y (mod 2) defined componentwise by

(x+ y)` = (x` + y`) (mod 2), ` = 1, . . . , p.

Furthermore, we have

tx = (tx1, . . . , txp). t = 0, 1.

TheHamming distanceonHp is the mappingHp ×Hp → R+ defined by

dH(x,y) =

p∑
`=1

|x` − y`|, x,y ∈ Hp.

Thus,dH(x,y) counts the number of positions where the vectorsx andy differ.
That the mappingHp ×Hp → R+ is adistanceonHp can be easily established.
Indeed, it satisfies the properties of definiteness and symmetry, and the triangular
inequality:

• Definiteness:
dH(x,y) = 0 if and only if x = y.

• Symmetry: For allx andy inHp, we have

dH(y,x) = dH(x,y)
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• Triangular inequality: For allx, y andz inHp, we have

dH(x, z) ≤ dH(x,y) + dH(y, z).

We set

wH(x) =

p∑
`=1

x`, x ∈ Hp.

The quantitywH(x) is called the(Hamming) weightof the elementx. It counts
the number of coordinates ofx which are non-zero. By direct inspection we note
that

dH(x,y) = wH(x− y), x,y ∈ Hp.(1)

Generalities on codes
Throughoutk andn are positive inetgers such thatk < n. The information (mes-
sage) to be transmitted is formatted as a vectorm inHk with binary components,
say

m = (m1, . . . ,mk).

An (n, k)-codeis anydeterministicmappingC : Hk → Hn with the interpre-
tation that thecodewordC(m) is uniquelyassociated with the information vector
m. This requires the mappingC : Hk → Hn to beone-to-one, i.e., for distinctm
andm′ in Hk, we haveC(m) 6= C(m′). Conversely, ifC(m) = C(m′), then
necessarilym = m′. On occasions we shall write

c = (c1, . . . , cn) = C(m).

The process by whichc is associated withm is known asencoding, and the
mappingC : Hk → Hn is also referred to as an encoding mapping.

The collection
C = {m ∈ Hk : C(m)}

is known as thecodebookassociated with the codeC : Hk → Hn, and in many
instances it is customary to refer toC as the code (without any further reference
to the encoding mappingC : Hk → Hn). Since the mappingC : Hk → Hn is
one-to-one, we have|C| = |Hk|, whence

|C| = 2k

upon recalling that|Hk| = 2k. It should be pointed out that distinct encoding
mappings can generate the same codebook.
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A codeC : Hk → Hn is said to be insystematicform if

c = C(m) = (b,m) , m ∈ Hk

whereb is an element ofHn−k determined bym. The advantage of a systematic
code lies in the fact thatm can be read offc without any further processing.

Theminimum (Hamming) distanceof the codeC is simply defined as

dH(C) := min

(
dH(C(m), C(m′)),

m 6= m′

m,m′ ∈ Hk

)
.

It is plain thatdH(C) is always apositiveinteger. This quantity measures how
clusteredthe codewords inC are inHn; its importance will shortly become ap-
parent. Moreover, note thatdH(C) depends only on the codebook generated by
the encoding mappingC : Hk → Hn, and not on the specific encoding mapping
used. Sometimes we shall also use the notationdH(C) to reflect this fact.

The decoding problem
A source generates information that needs to be transmitted over an imperfect
channel: Possibly after some source coding, the information (message) to be
transmitted is formatted as an information vectorm in Hk. Using a(n, k)-code
C : Hk → Hn, this message is encoded into a codewordc = C(m) in Hn. This
codeword is fed into the modulator which then generates the appropriate wave-
form used for transmission over the channel. The transmission process being
imperfect, impairments occur due to channel noise and channel distortions (e.g.,
dispersive effects, fading, etc). As a result, the received waveform may be differ-
ent from the modulated waveform that was originally sent over the channel. The
demodulation process, which is expected to invert the modulation process, then
extracts (from the received waveform) a “received” vectorr inHn.

Under reasonable channel conditions, we expectr to be a reasonably good
proxy for c. However, there is no guarantee thatr = c, or even thatr is a
codeword inC. The need therefore arises to reverse the encoding process by
providing a guess or estimate ofc on the basis ofr. This process is known as
the decodingprocess, and can be formalized through a mappingD : Hn → C
known as adecodingmapping. Once a decoding mapping has been selected, the
codeword̂c = D(r) is determined, and the unique messagem̂ such that

ĉ = C(m̂)
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can be identified. It is then concluded that the messagem̂ has been sent. Of
course, if

ĉ = D(r) 6= c,

then there will be an error sincêm 6= m!
There are many ways to design decoding mappings. However, any such se-

lection must have the following property: If the received vectorr is already a
codeword, then the decoding mappingD : Hn → C should returnr, i.e.,

ĉ = D(r) = r if r ∈ C.(2)

See below for the rational for doing so.
Upon reception ofr, two possibilities arise:

1. If r ∈ C: Sincer is already a codeword, there is no reason to declare that an
error has occured. The receiving side, having no evidence to the contrary,
will indeed accept the received vectorr as correct – This is the reason why
any decoding mappingD : Hn → C satisfies (2). More precisely, the
receiver will acceptr as having been the codeword that was used as input
to the modulation process. Consequently, sincer is abona fidecodeword,
there exists a unique element̂m inHk so that

r = C(m̂),

and it will be concluded that̂m was indeed the information transmitted!
However there is no guarantee thatr = c. It is possible thatr 6= c, still
with r an element ofC, in which case a decoding error occurs. Such an
errorcannotbe detected. Such a failure to detect an error is characterized
by

r ∈ C but r 6= c.

2. If r /∈ C: Error detection occurs sincer is nota codeword. Errorcorrection
is then required, and this amounts to selecting anestimatêc of c on the basis
r. This estimatêc must be a codeword and is produced by the decoding
mappingD : Hn → C. Once the estimatêc = D(r) has been computed,
there exists a unique element̂m inHk so that

ĉ = C(m̂).

It will then be concluded that̂m was indeed the information transmitted!
This conclusion may be in error since there is a possibility thatĉ 6= c. Of
course, if the estimation algorithm returnsĉ = c, thenm̂ = m, in which
case both error detection and error correction would have taken place!
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One very popular algorithm, known as Nearest Neighbor decoding, is now
described. The Nearest Neighbor decoding rule selects an estimateĉNear of c on
the basis ofr through the rule

ĉNear := arg min (cother ∈ C : dH(cother, r))

with a tie-breaker. The geometric interpretation of this rule is clear: The estimate
ĉNear is the codeword inC that is closest (in the sense of Hamming distance) to
the receivedr. This rule satisfies both requirements mentioned above.

Basic facts

Consider a(n, k)-codeC : Hk → Hn. The minimum Hamming distance of
the codeC is a useful measure of its ability to detect and correct errors. This will
become apparent from the following discussion: Throughout the messagem in
Hk is encoded with the codewordc = C(m), and the received vectorr is of the
form

r = c+ e (mod 2)(3)

where the vectore is an element ofHn which describes the channel errors.

Lemma 0.1 Error detection: Consider a (n, k)-code C : Hk → Hn with

dH(C) = d+ 1

for some positive integer d. This code has the ability to detect any error pattern
with k bit reversals provided 1 ≤ k ≤ d.

In other words, any pattern withat mostd errors, if it occurs, will be detected.
This property does not depend on the decoding scheme used when the received
vectorr is not a codeword.

Proof. The messagem in Hk is encoded with the codewordc = C(m), and the
received vectorr is of the form (3) for some error vectore inHn.

Assume thatr differs fromc in exactlyk positions with

1 ≤ k < dH(C).

Obviously, sincedH(r, c) = k, we conclude that

0 < dH(r, c) < dH(C).
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As a result,r, which is different fromc, cannot be a codeword inC and the error
is detected

Lemma 0.2 Error correction: Consider a (n, k)-code C : Hk → Hn with

dH(C) = 2d+ 1

for some positive integer d. This code has the ability to correct any error pattern
with k bit reversals provided 1 ≤ k ≤ d provided Nearest Neigbor decoding is
used.

Any pattern withat mostd errors will be detected and subsequently corrected

Proof. Again, the messagem in Hk is encoded with the codewordc = C(m),
and the received vectorr is of the form (3) for some error vectore inHn.

Assume thatr differs fromc in exactlyk positions with

0 < 2k < dH(C).

We already havek < dH(C) and that error pattern will be detected by Lemma 0.1.
By the triangle inequality we have

dH(c, cother) ≤ dH(c, r) + dH(r, cother), cother ∈ C.

Pick any other codewordcother 6= c in C. SincedH(c, r) = k, we have

dH(c, cother) ≤ k + dH(r, cother).

Using the definition ofdH(C) yields

dH(C) ≤ k + dH(r, cother),

whence
dH(C)− k ≤ dH(r, cother).

By the condition ondH(C), we conclude that

dH(r, cother) > k,
cother 6= c
cother ∈ C.
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while
dH(r, c) = k.

Nearest Neighbor decoding yields

ĉNear = arg min (cother ∈ C : dH(r, cother))

= c,

and error correction takes place!

Channel models
At some abstract level, a communication channel can be viewed as an operation
that maps codewords into received vectors. Owing to the vagaries of the commu-
nication process, this mapping is usuallyrandomin that if the codewordc is sent,
then only the likelihood of occurence of the received vectorr can be specified
(if at all). There is no guarantee that the received vector will coincide withc, let
alone that the identity ofr will be known in advance. This state of affairs suggests
the following probabilistic characterization of a channel:

A channel is characterized by a collection

P ≡ {p(x,y), x,y ∈ Hn}(4)

of scalars such that
0 ≤ p(x,y) ≤ 1, x,y ∈ Hn

and ∑
y∈Hn

p(x,y) = 1, x ∈ Hn.

Thus, for eachx in Hn, the collection{p(x,y), y ∈ Hn} is a probability mass
function onHn. We understandp(x,y) as theconditionalprobability thaty was
received given thatx was sent, i.e.,

p(x,y) = P [ y received| x sent] , x,y ∈ Hn.

In many cases the channel istranslation invariantin that there exists a map-
ping q : Hn → [0, 1] such that

p(x,y) = q(y − x)(5)

= q(e), x,y ∈ Hn(6)
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wheree is the channel error determined by

e = y − x (mod 2),

or equivalently,
y = x+ e (mod 2).

The following two models will be used to illustrate a number of issues.

The vector error model – All channel error vectors are assumed to beequally
likely, i.e.,

p(x,y) =
1

2n
, x,y ∈ Hn.

This model is clearly translation invariant with

q(e) =
1

2n
, e ∈ Hn.

All errors equally matter!

The componentwise model This model is sometimes also known as therandom
bit error model. Bit errors occurindependentlyof each other with probabilityα
(0 < α < 1), so that

p(x,y) = αdH(x,y)(1− α)n−dH(x,y)

= αwH(y−x)(1− α)n−wH(y−x), x,y ∈ Hn

as we note thatdH(x,y) = wH(y − x). Thus, this model is also translation
invariant with

q(e) = αwH(e)(1− α)n−wH(e), e ∈ Hn.

For 0 < α < 0.5, we note that

q(e) ↓ as wH(e) ↑ .

so that only errors in a few positions matter!

Performance metrics
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Consider a codeC : Hk →→ Hn with codebookC, and assume that the
communication channel is characterized by the collectionP given by (4). We are
interested in assessing the probabilityErr(C) thaterror detection failswhen using
C. More precisely, assume the messagem in Hk is encoded with the codeword
c = C(m), and the received vectorr is of the form (3). Failure to detect an error
is characterized by

r ∈ C but r 6= c.

In terms of the error patterne appearing in (3), this is equivalent to

c+ e ∈ C but e 6= 0n.

Thus, by the law of total probabilities, we get

Err(C) = P [ Error detection fails underC]

=
∑
c∈C

P [ Error detection fails underC|c sent]P [c sent]

=
∑
c∈C

P [r ∈ C, r 6= c|c sent]P [c sent] .(7)

Therefore, as we define

E(c) = { e ∈ Hn : e 6= 0n, c+ e ∈ C} ,

we get

P [r ∈ C, r 6= c|c sent] =
∑
e∈Hn

P [c+ e ∈ C, e 6= 0n|c sent]

=
∑
e∈E(c)

P [c+ e ∈ C, e 6= 0n|c sent]

=
∑
e∈E(c)

p(c, c+ e).(8)

Substituting (8) into (7) we conclude that

Err(C) = P [ Error detection fails underC]

=
∑
c∈C

 ∑
e∈E(c)

p(c, c+ e)

P [c sent] .(9)
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When the channel is translation invariant, this last expression can be rewritten
as

Err(C) =
∑
c∈C

 ∑
e∈E(c)

q(e)

P [c sent] .(10)

In a number of important cases, the code has the property that the setsE(c)
are all the same regardless of the choice ofc, i.e.,

E(c) = E(0n), c ∈ C.(11)

Lemma 0.3 Consider a code C : Hk →→ Hn which satisfies the message invari-
ance property (11), while the communication channel P satisfies the invariance
property (6). Then, we have

Err(C) =

 ∑
e∈E(0n)

q(e)

 .(12)

This expression is independent of the pmf{P [c sent] , c ∈ C} on the channel
input.

Proof. With the notation used thus far, under message invariance property (11),
the expression (10) becomes

Err(C) =
∑
c∈C

 ∑
e∈E(0n)

q(e)

P [c sent]

=

 ∑
e∈E(0n)

q(e)

(∑
c∈C

P [c sent]

)
(13)

and the conclusion (12) follows since∑
c∈C

P [c sent] = 1.


