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COMMUNICATIONS SYSTEMS

QUANTIZATION

Throughout, letX stand for a scalar rv taking values in the intervalI :=
(A,B] for some finite scalarsA < B. We denote byF its probability distribution
function, so that

P [X ≤ x] = F (x), x ∈ R.

We shall assume thatF admits a probability density functionf , so that

F (x) =


0 if x ≤ A∫ x
A
f(t)dt if A < x ≤ B

1 if B < x.

Quantizers

A quantizerQ with M levels for the interval(A,B] (or interchangeably, for
any rvX distributed on the interval(A,B]) is characterized by a collection ofM
contiguoussub-intervals orcellspartioning(A,B], sayI1, . . . , IM , and a collec-
tion of representation levelsq1, . . . , qM , one to represent each of the intervals. The
partitioning constraints amounts to

Im := (Am, Bm], m = 1, . . . .M

with the notation 
A1 = A;

Am+1 = Bm, m = 1, . . . ,M − 1;
BM = B.

We also require
qm ∈ Im, m = 1, . . . ,M.
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Often we shall denote such a quantizerQ by

Q ≡ (I1, . . . , IM ; q1, . . . , qM).

At times it will also be convenient to think of this quantizer as amapping
Q : I → I given by

Q(x) = qm if x ∈ Im, m = 1, . . . ,M.

Uniform quantizers

A quantizer is said to beuniform on the interval(A,B] if its cells all have
thesamelength and the representatives areequidistant. This uniquely determines
the quantizerQu = (Iu1 , . . . , I

u
M ; qu1 , . . . , q

u
M), hereafter referred to as theuniform

quantizerfor the interval(A,B], with

Bu
1 − Au1 = Bu

2 − Au2 = . . . = Bu
M − AuM

and

qum =
Aum +Bu

m

2
, m = 1, . . . ,M.

Indeed, each interval must have lengthB−A
M

so that for eachm = 1, . . . ,M

Aum = A+ (m− 1) · B − A
M

and

Bu
m = A+m · B − A

M
,

whence

qum =
Aum+Bu

m

2
= A+

2m− 1

2
· B − A

M
.

Measuring distortion

If X is the variable to be quantized, then thequantization erroror quantization
noiseunder the quantizerQ is given by

ε(Q;X) := Q(X)−X.
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With the quantizerQ we associate thedistortion measure

Φ(Q;F ) := E
[
|ε(Q;X)|2

]
(1)

as a way to assess how well the quantized versionQ(X) of X approximatesX.
We define thesignal-to-quantization-noise ratio(SQNR) associated with the

quantizerQ as the ratio

SQNR(Q;X) :=
E [X2]

E [|ε(Q;X)|2]
.

In selecting a quantizer for the rvX it should be intuitively clear that a large value
for SQNR(Q;X) is desirable.

The quantization problem

Fix some positive integerM ≥ 2. Given the rvX distributed over the interval
I, we are interested in minimizing the distortion measure (1) over all possible
quantizers withM levels for the intervalI.

For any such quantizerQ ≡ (I1, . . . , IM ; q1, . . . , qM), we note that

Φ(Q;F ) = E

[
|ε(Q;X)|2

]
=

∫
R

|ε(Q;x)|2f(x)dx

=

∫ B

A

|Q(x)− x|2f(x)dx

=
M∑
m=1

∫ Bm

Am

|Q(x)− x|2f(x)dx

=
M∑
m=1

∫ Bm

Am

|qm − x|2f(x)dx.(2)

Thus, with quantizerQ characterized by cellsI1, . . . , Im and representation levels
q1, . . . , qM , we shall write

Φ(Q;F ) = ΦF (I1, . . . , IM ; q1, . . . , qM)

with

ΦF (I1, . . . , IM ; q1, . . . , qM) =
M∑
m=1

∫ Bm

Am

|qm − x|2f(x)dx.(3)
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Given cellsI1, . . . , IM

We start with contiguous cellsI1, . . . , IM partitioningI, and focus on the fol-
lowing minimization problem: Find the representation levelsq1, . . . , qM which
minimize

ΦF (I1, . . . , IM ; q1, . . . , qM)

under the constraints
qm ∈ Im, m = 1, . . . ,M.

The expression (3) isseparablein the variablesq1, . . . , qM and the constraints
on them. As a result, the original minimization problem can be solved by solving
each of the followingM sub-problems. Indeed,

min

(
M∑
m=1

∫ Bm

Am

|qm − x|2f(x)dx, qm ∈ Im, m = 1, . . . ,M

)

=
M∑
m=1

min

(∫ Bm

Am

|qm − x|2f(x)dx, qm ∈ Im
)
.(4)

With this in mind, fixm = 1, . . . ,M . We now seek to minimize∫ Bm

Am

|qm − x|2f(x)dx

under the constraint
qm ∈ Im.

The solution is straightforward: We note that∫ Bm

Am

|qm − x|2f(x)dx

= q2
m

∫ Bm

Am

f(x)dx− 2qm

∫ Bm

Am

xf(x)dx+

∫ Bm

Am

x2f(x)dx.(5)

This quadratic form in the variableqm is minimized atq?m given by

q?m =

∫ Bm
Am

xf(x)dx∫ Bm
Am

f(x)dx
.
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This can be seen by a completion-of-square argument, or by taking the derivative
with respect the variableqm and setting it equal to zero: Thus,

1

2

d

dqm

(∫ Bm

Am

|qm − x|2f(x)dx

)
= qm

∫ Bm

Am

f(x)dx−
∫ Bm

Am

xf(x)dx

= 0,(6)

and the value forq?m follows. It is easy to see that

Am ≤ q?m ≤ Bm

and the candidate solutionq?m obtained by unconstrained minimization is an ele-
ment ofIm, as required.

Thus, for eachm = 1, 2, . . . ,M , given the intervalIm, we have

min

(∫ Bm

Am

|qm − x|2f(x)dx, qm ∈ Im
)

=

∫ Bm

Am

|q?m − x|2f(x)dx.

where

q?m ==

∫ Bm
Am

xf(x)dx∫ Bm
Am

f(x)dx
.

Given representation levelsq1, . . . , qM

This time we are givenM distinct representation levels inI, sayA < q1 <
. . . < qM < B, and we focus on the following minimization problem: Find the
cellsI1, . . . , IM which minimize

ΦF (I1, . . . , IM ; q1, . . . , qM)

under the constraints
I1 ∪ . . . ∪ IM = (A,B]

and
qm ∈ Im, m = 1, . . . ,M.
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In contrast with the problem discussed earlier, this minimization problem is
no more separable. However, a careful inspection of the expression (3) suggests
that the intervals

I?m

:=

{
x ∈ (A,B] : |x− qm|2 ≤ |x− qk|2,

k = 1, . . . ,M
k 6= m

}
, m = 1, . . . ,M

constitute the solution.1 Before giving a proof of this assertion, it is worth pointing
out that for distinct̀ andm, the inequality

|x− qm|2 ≤ |x− q`|2(7)

occurs if and only if

(qm − q`)(2x− (q` + qm)) ≥ 0.

Thus, ifqm < q` (resp.q` < qm), then (7) holds providedx ≤ qm+q`
2

. Similarly, if
q` < qm, then (7) holds providedx ≥ qm+q`

2
. A moment of reflection shows that

the setsI?1 , . . . , I
?
m are indeedintervalsof the form

I?m = (A?m, B
?
m], m = 1, . . . ,M

with
A?1 = A, A?m =

qm−1 + qm
2

, m = 2, . . . ,M.

It goes without saying thatB?
m = A?m+1 for eachm = 1, . . . ,M−1 andB?

M = B.
To establish the optimality of the intervalsI?1 , . . . , I

?
M , we proceed as follows:

Recall that for any functiong : I → R, the linearity of the intergral operation
gives ∫

I

g(x)dx =
M∑
m=1

∫
Im

g(x)dx

for any partitionI1, . . . , Im of the intervalI. Now, for eachm = 1, . . . ,M , the
definition of the intervalI?m yields

|x− qm|2 = min
k=1,...,M

|x− qk|2, x ∈ I?m.
1The boundary points are selected so as to create intervals which are open to the left and closed

to the right.
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Therefore,

ΦF (I1, . . . , IM ; q1, . . . , qM)− ΦF (I?1 , . . . , I
?
M ; q1, . . . , qM)

=
M∑
m=1

∫
Im

|x− qm|2f(x)dx−
M∑
m=1

∫
I?m

|x− qm|2f(x)dx

=
M∑
m=1

∫
Im

|x− qm|2f(x)dx−
M∑
m=1

∫
I?m

(
min

k=1,...,M
|x− qk|2

)
f(x)dx

=
M∑
m=1

∫
Im

|x− qm|2f(x)dx−
∫ B

A

(
min

k=1,...,M
|x− qk|2

)
f(x)dx

=
M∑
m=1

∫
Im

|x− qm|2f(x)dx−
M∑
m=1

∫
Im

(
min

k=1,...,M
|x− qk|2

)
f(x)dx

=
M∑
m=1

(∫
Im

|x− qm|2f(x)dx−
∫
Im

(
min
k,...,M

|x− qk|2
)
f(x)dx

)

=
M∑
m=1

∫
Im

(
|x− qm|2 −

(
min

k=1,...,M
|x− qk|2

))
f(x)dx

≥ 0.(8)

Thus, given the representation levelsq1, . . . , qM , the cellsI?1 , . . . , I
?
M are given by

I?m = (A?m, B
?
m], m = 1, . . . ,M

with
A?1 = A, A?m =

qm−1 + qm
2

, m = 2, . . . ,M.

An iterative process

Imagine that you need to minimize the functionH : Rp × Rq → R wherep
andq are positive integers. Although this is a complicated function, assume that
it is fairly easy to perform the following two minimizations:

• For eachx in Rp,

MinimizeH(x,y) with respect toy ∈ Rq
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with solutiony?(x), i.e.,

H(x,y?(x)),≤ H(x,y), y ∈ Rq.

• For eachy in Rq,

MinimizeH(x,y) with respect tox ∈ Rp

with solutionx?(y), i.e.,

H(x?(y),y) ≤ H(x,y), x ∈ Rp.

On the basis of this information the following two-stepiterative algorithm
suggests itself very naturally:

Pickx1 in Rp and sety1 = y?(x1), so that

H(x1,y1) ≤ H(x1,y), y ∈ Rq.

Next, withx2 = x?(y1), it is plain that

H(x2,y1) ≤ H(x,y1), x ∈ Rp,

whence
H(x2,y1) ≤ H(x1,y1).

Similarly, if we sety2 = y?(x2), then

H(x2,y2) ≤ H(x2,y1).

Repeating this procedure yields a sequence{(xn,yn), n = 1, 2, . . .} in Rp ×
Rq through

xn+1 = x?(yn) and yn+1 = y?(xn+1).

By construction we get

H(xn+1,yn) ≤ H(xn,yn)

and
H(xn+1,yn+1) ≤ H(xn+1,yn)
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for all n = 1, 2, . . .. It follows that the sequence{H(xn,yn), n = 1, 2, . . .} is
non-decreasing, hence its limit

L = lim
n→∞

H(xn+1,yn+1)

always exists. A number of natural questions arise:

1. Is it the case that

L = min (H(x,y), x ∈ Rp, y ∈ Rq) .

2. Is there a point(x?,y?) in Rp × Rq such that

lim
n→∞

(xn+1,yn+1) = (x?,y?).

3. Is it the case then that
H(x?,y?) = L.

Thes developments of the two previous sections suggest aniterativeapproach to
solving the quantization problem as we identify

x← (I1, . . . , IM),

y ← (q1, . . . , qM)

and
H(x,y)← ΦF (I1, . . . , Im; q11, . . . , qM).

Uniformly distributed samples revisited

The rvX is uniformly distributed onI if its probability density functionf is
given by

f(x) =


0 if x ≤ A

1
B−A if A < x ≤ B

0 if B < x.
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We shall apply the iteration process outlined above:
Start with the cellsI + 1, . . . , IM with

Im = (Am, Bm], m = 1, 2, . . . ,M.

In that case, the best representation levels take a particularly simple form: For
eachm = 1, . . . ,M , we have

q?m =

∫ Bm
Am

x
B−Adx∫ Bm

Am
1

B−Adx

=

∫ Bm
Am

xdx∫ Bm
Am

dx

=
B2
m − A2

m

2(Bm − Am)

=
Am +Bm

2
(9)

so thatq?m is the mid-point of the intervalIm.
Next, consider the representation levelsq1, . . . , qm with

A < q1, . . . < qM < B.

As indicated earlier, the best corresponding cells are the intervalsI?1 , . . . , I
?
m of

the form
I?m = (A?m, B

?
m], m = 1, . . . ,M

with
A?1 = A, A?m =

qm−1 + qm
2

, m = 2, . . . ,M.

A classical calculation of the signal-to-quantization-noise ratio

Consider theuniformquantizerQu = (Iu1 , . . . , I
u
M ; qu1 , . . . , q

u
M). For eachm =

1, . . . ,M , wheneverx lies in the intervalIum, we have

ε(Qu;x) = Qu(x)− x = qum − x

anqum being the midpoint of the intervalIum, it follows that

|x− qum| ≤
B − A

2M
.
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As a result, the rvX −Qu(X) takes values in the symmetric interval

J :=

[
−B − A

2M
,
B − A

2M

]
.

It is easy to see that if the densityf is sufficiently smooth andM is sufficiently
large,2 then the probability distribution of the rvX−Qu(X) is well approximated
by the uniform distribution on the intervalJ . Thus,

E

[
|ε(Qu;X)|2

]
=

∫ B−A
2M

−B−A
2M

t2fεQu (X)(t)dt

'
∫ B−A

2M

−B−A
2M

t2

B−A
M

dt

=
M

B − A
·
[
t3

3

]B−A
2M

−B−A
2M

=
2M

3(B − A)
·
(
B − A

2M

)3

(10)

so that

E

[
|ε(Qu;X)|2

]
' 1

12
·
(
B − A
M

)2

.

Finally,

SQNR(Qu;X) =
E [X2]

E [|ε(Qu;X)|2]

' 12
E [X2]

(B − A)2
·M2.(11)

It is customary to write
M = 2R

2As the calculations given at the end of the writeup show, these conditions have to be read to
saying that the staircase approximation off anchored at the pointsA+mB−A

M ,m = 0, 1, . . . ,M−
1 is indeed a (reasonably) good approximation off .
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whereR is the size of the binary representation ofM . With this notation we get

SQNR(Qu;X) ' C(X) · 22R

where the first factor

C(X) = 12
E [X2]

(B − A)2

is determined only by the source, while the second factor22R expresses the coarse-
ness of the approximation of the quantizer. Thus,

SQNR(Qu;X)dB ' 10 log10 C(X) + 20R · log10 2 (dB)

= 10 log10 C(X) + 6.02 ·R (dB)(12)

as we recall thatlog10 2 = 0.30102999 . . .. Adding one extra bit means two levels
with the net result that the SQNR increases by.02 dB.

Companding – Non-uniform quantizers through composition

With Ã < B̃, define the interval̃I = (Ã, B̃]. Assume given a continuous
mappingΦ : I → Ĩ which isstrictly monotone increasingwith

Ã = Φ(A) and B̃ = Φ(B).

Thus,Φ puts the intervalsI and Ĩ into one-to-onecorrespondence. The case of
interest is whenΦ is non-linear.

Let X denote a rv with a non-uniform distribution on the intervalI. With
X̃ := Φ(X), the rv X̃ is distributed on the interval̃I. We shall quantize its
samples by means of the uniform quantizer for the intervalĨ, namely

Q̃u ≡ (Ĩu1 , . . . , Ĩ
u
M ; q̃u1 , . . . , q̃

u
M)

with cells
Ĩum = (Ãum, B̃

u
m], m = 1, . . . ,M

and representation levels

q̃um =
Ãum + B̃u

m

2
, m = 1, . . . ,M

where

Ãum = Ã+ (m− 1) · B̃ − Ã
M

.
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This uniform quantizer̃Qu, through the intermediary ofΦ, produces anon-
uniformquantizerQ for X by setting

Q(x) := Φ−1
(
Q̃u(Φ(x))

)
, x ∈ I.

This procedure is known ascompanding, an abbreviation forcompressing fol-
lowed by expanding.

It is easy to check that this procedure indeed defines a quantizerQ for the
intervalI with cellsI1, . . . , IM and representation levelsq1, . . . , qM given by

Im := Φ−1(Ĩum) and qm := Φ−1(q̃um), m = 1, . . . ,M.

The intervalIm is of the form(Am, Bm] with endpoints

Am = Φ−1(Ãum) and Bm = Φ−1(B̃u
m).

In short,
Q(x) = Φ−1(q̃um), x ∈ Im, m = 1, . . . ,M.

The functionΦ is selected so as to capture key features of the distribution ofX,
e.g., its skewness. This is done by trial and error, by using functions that belong
to well structured classes of functions. This approach obviates the need to solve
the quantization problem, usually a difficult task, either directly or through the
iterative procedure outlined earlier. While companding may yield a sub-optimal
quantizer (with respect to the mean-square distortion metric used earlier), its ro-
bustness and ease of implementation are traded for acceptable performance.

Fix m = 1, . . . ,M . By construction, we have

B̃u
m − Ãum = Φ(Bm)− Φ(Am)

=

∫
Im

Φ′(x)dx(13)

under weak differentiability assumptions. Now note that

B̃u
m − Ãum =

B̃ − Ã
M

while ∫
Im

Φ′(x)dx ' (Bm − Am)Φ′(qm).
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Comparing we see that

B̃ − Ã
M

' (Bm − Am)Φ′(qm)

so that

Bm − Am '
B̃ − Ã
MΦ′(qm)

.

The µ andA-laws

In practice the intervalI = (A,B] is symmetric with respect to the origin with
A = −B for B > 0, the interval̃I coincides withI, and the compressor is anodd
strictly increasing and continuous functionΦ : I → I with

Φ(−x) = −Φ(x), |x| ≤ B

and
Φ(±B) = ±B.

Companding has been deployed in telephone networks as part of the PCM
format. Two standards have emerged: Theµ-law is used in the U.S, Canada and
Japan, while theA-law has been adopted in Europe. They are briefly discussed
below.

With µ > 0, theµ-law corresponds to the mappingΦµ : [−B,B] → [−B,B]
given by

Φµ(x) = B ·
ln
(

1 + µ |x|
B

)
ln(1 + µ)

· sgn(x), |x| ≤ B(14)

Forµ = 0, we findΦµ(x) = x on the interval[−B,B] and companding reduces
to uniform quantization onI.

With A > 1, theA-law is defined through the mappingΦA : [−B,B] →
[−B,B] given by

ΦA(x) :=


A

1+lnA
· |x| · sgn(x) if |x|

B
≤ 1

A

B
1+ln(A |x|B )

1+lnA
· sgn(x) if 1

A
≤ |x|

B
≤ 1

(15)

with A > 1. The valueA = 1 yieldsΦA(x) = x on the interval[−B,B], in which
case companding reduces to uniform quantization onI.
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Approximating the probability density function of the quantization noise un-
der a uniform quantizer

Pick t in the intervalJ where

J =

[
−B − A

2M
,
B − A

2M

]
.

By standard probabilistic arguments,

P [ε(Qu;X) ≤ t] =
M∑
m=1

P [X ∈ Ium, ε(Qu;X) ≤ t]

=
M∑
m=1

P [X ∈ Ium, Qu(X)−X ≤ t]

=
M∑
m=1

P [X ∈ Ium, qum −X ≤ t]

=
M∑
m=1

P [X ∈ Ium, qum − t ≤ X]

=
M∑
m=1

P [Aum < X ≤ Bu
m, q

u
m − t ≤ X]

=
M∑
m=1

P [qum − t ≤ X ≤ Bu
m]

=
M∑
m=1

∫ Bum

qum−t
f(x)dx(16)

as we have used the fact thatqum is the midpoint betweenAum andBu
m (which are

themselvesB−A
M

apart of each other), so that

Aum < qum − t ≤ Bu
m, t ∈ J.

If the probability density functionf of X is sufficiently smooth andM is
sufficiently large, then the approximation

f(x) ' f(qum), x ∈ Ium, m = 1, . . . ,M
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is likely to hold since each of the intervalsIu1 , . . . , I
u
M is small. Reporting this fact

into the result of the earlier calculations we get

P [ε(Qu;X) ≤ t] =
M∑
m=1

∫ Bum

qum−t
f(x)dx

'
M∑
m=1

∫ Bum

qum−t
f(qum)dx

=
M∑
m=1

f(qum) (Bu
m − (qum − t))

=
M∑
m=1

f(qum)

(
B − A

2M
+ t

)
(17)

since

Bu
m − qum =

(
A+m · B − A

M

)
−
(
A+

2m− 1

2
· B − A

M

)
=

B − A
2M

.(18)

Therefore,

P [ε(Qu;X) ≤ t] '

(
M∑
m=1

f(qum)

)
·
(
B − A

2M
+ t

)

=

(
M∑
m=1

f(qum)
B − A
M

)
·
(

1

2
+

M

B − A
· t
)

' 1

2
+

M

B − A
· t, t ∈ J.(19)

The last step leading to (19) relies on the approximation argument used earlier but
in the following reversed way: We see that

M∑
m=1

f(qum)
B − A
M

=
M∑
m=1

∫
Ium

f(qum)dx

'
M∑
m=1

∫
Ium

f(x)dx
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=

∫
I

f(x)dx

= 1(20)

since a probability density function integrates to unity. It is now straightforward
to see that (19) is the probability distribution function of a rv which is uniformly
distributed onJ .

SQNR under companding

LetQ denote the non-uniform quantizer obtained by companding through the
compressorΦ : (A,B]→ (Ã, B̃].

E

[
|ε(Q;X)2|

]
=

M∑
m=1

∫
Im

(Q(x)− x)2f(x)dx

=
M∑
m=1

∫
Im

(qm − x)2f(x)dx

'
M∑
m=1

f(qm)

∫
Im

(qm − x)2dx

=
M∑
m=1

f(qm)(21)

since ∫
Im

(qm − x)2dx =

∫ Bm

Am

(qm − x)2dx

=

[
−(qm − x)3

3

]Bm
Am

=
1

3

(
(qm − Am)3 − (qm −Bm)3

)
.(22)


