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COMMUNICATIONS SYSTEMS

QUANTIZATION

Throughout, letX stand for a scalar rv taking values in the intervat=
(A, B] for some finite scalard < B. We denote by its probability distribution
function, so that

PX <z]=F(z), zeR

We shall assume thdt admits a probability density functiofy so that

0 if <A
Flz)=< [ift)at if A<z<B

1 if B <.

Quantizers

A quantizer@ with M levels for the interval A, B] (or interchangeably, for
any rv X distributed on the intervdlA, B]) is characterized by a collection 6f
contiguoussub-intervals ocells partioning(A, B], sayly, ..., I, and a collec-
tion of representation levelg, . . ., g)s, One to represent each of the intervals. The
partitioning constraints amounts to

Ln = (Am,Bpl, m=1,....M

with the notation

A1:A,
Am+1:Bm,m:1,...,M—1;
By = B.

We also require
Gm € Ly, m=1,..., M.
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Often we shall denote such a quantizeby

QE([la--wIM;QM---aQM)'

At times it will also be convenient to think of this quantizer asnapping
Q : I — I given by

Qz)=qn fzxel, m=1,...,M.

Uniform quantizers

A quantizer is said to beniform on the interval(A, B] if its cells all have
thesameength and the representatives agpiidistant This uniquely determines
the quantize®" = (I}, ..., I} 4, . .., qY;), hereafter referred to as th@iform
quantizerfor the interval( A, B, with

B! — Al =By — Ay =...= B}, — A},
and Av 1 Bu
qﬁz%, m=1,..., M.

Indeed, each interval must have Ienég@é sothatforeachmn =1,..., M

B—-A
A = A 1) ———
h= At (m =) =
and B_ A
B* — A Z2 -
m +m M Y
whence
_ A'm+ By, A 2m—-1 B-A
n =9 7 2 M

Measuring distortion

If X isthe variable to be quantized, then thentization errolor quantization
noiseunder the quantizep is given by

e(@; X) == Q(X) - X.
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With the quantizer) we associate théistortion measure
(1) O(Q; F) == E [[e(@Q; X))

as a way to assess how well the quantized ver§igK ) of X approximates.
We define thesignal-to-quantization-noise ratilGQNR) associated with the
gquantizer as the ratio

E[X?]
E [le(@Q; X) 2

In selecting a quantizer for the ¥ it should be intuitively clear that a large value
for SQNR(Q; X) is desirable.

SQNR(Q; X) =

The quantization problem

Fix some positive integel/ > 2. Given the rvX distributed over the interval
I, we are interested in minimizing the distortion measure (1) over all possible
guantizers withV/ levels for the interval .

For any such quantiz&€p = (I3, ..., Iy; ¢, - - -, qu ), We note that

Qs F) = E[le(Q; X)I]
ARG
- / Q) — a2 ()
- Z 10t =k oy
Bm
@ -y | = s p e
m=1 Am
Thus, with quantize€) characterized by cells, . . ., I,, and representation levels
¢, - - -, qu, We shall write

@(Q7F) :(I)F(Il7"'7IM;QI7"'7QM>
with
M Bm
(3) q)F(-[baIMaqlaaqM):Z/ |qm—x|2f(:(:)dx
m=1 Am
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Givencellsiy, ..., Iy

We start with contiguous cellg, . . ., I, partitioning/, and focus on the fol-
lowing minimization problem: Find the representation levgls. . ., ¢y, which
minimize

Cp(lr,.. s I qus - -, QM)
under the constraints
Gm € Iy, m=1,..., M.

The expression (3) iseparabldn the variableg, . . ., ¢); and the constraints
on them. As a result, the original minimization problem can be solved by solving
each of the following\/ sub-problems. Indeed,

M Bm
min m — 2 f(x)dx, ¢ € Ln, m=1,.... M
(Z/ (G — 32 f (2)dz, G € Ty =1, )

m=1 Am
M B
4) = Z min (/ \Gm — 2)?f(2)dx, q, € Im) :
m=1 m
With this in mind, fixm =1, ..., M. We now seek to minimize

Bm
/ 4 — 2 f(2)de

Am

under the constraint
Gm € L.

The solution is straightforward: We note that
Bm
[
m Bm

B Bm
(5) = ¢ f(z)dx — qu/ zf(z)dr + / 2? f(x)dw.

Am

m

This quadratic form in the variablg, is minimized atg, given by

. ff: rf(x)dr
T fyds
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This can be seen by a completion-of-square argument, or by taking the derivative
with respect the variablg,, and setting it equal to zero: Thus,

1 d Bm 9
§dq—m (/Am |qm — | f(l’)dﬂf)

Bm Bm
= Qn f(z)dz —/ zf(x)dx
Am Am
(6) = 0,
and the value fog;, follows. It is easy to see that
Apm < gy, < Bn

and the candidate solutigyj, obtained by unconstrained minimization is an ele-
ment of/,,,, as required.

Thus, foreachn = 1,2, ..., M, given the interval,,,, we have
Bm B,
min (/ \gm — 22 f(z)dx, ¢ € Im) = / lqt, — x| f(z)dz.
m Am
where

. ffﬁ xf(z)dx
m == ffj f(x)dx

Given representation levelsy, . .., qu

This time we are giverl/ distinct representation levels ih sayA < ¢; <
... < qu < B, and we focus on the following minimization problem: Find the
cellsly, ..., Iy; which minimize

Q)F(Ila-”aIM;QIa"wQJV])

under the constraints
Lu...Uly = (A B]

and
Gmn € Iy, m=1,..., M.
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In contrast with the problem discussed earlier, this minimization problem is
no more separable. However, a careful inspection of the expression (3) suggests
that the intervals

]’*

m

k=1,....M
N . _ 2 < _ 2 9 ) —
= feeany poap<io-ar Pl b o
constitute the solutioh Before giving a proof of this assertion, it is worth pointing
out that for distinc? andm, the inequality

(7) [ = gnl® < |2 — qf?
occurs if and only if

(Qm - Qg)(QCL‘ - (W + Qm)) > 0.

Thus, ifg,, < g, (resp.q¢ < ¢.), then (7) holds provided < meﬂ Similarly, if
G < qm, then (7) holds provided > quﬂ A moment of reflection shows that
the setd7, ..., I}, are indeedntervalsof the form

I* = (A%, B%), m=1,....M

with n
Af = A, A:n:w, m=2,..., M.

It goes without saying thaky, = Ax ., foreachm =1,..., M —1andB}, = B.
To establish the optimality of the intervals, . . ., I}, we proceed as follows:
Recall that for any functioy : I — R, the linearity of the intergral operation

gives Ny
[ atate = > / g(x)da

for any partition/y, ..., I,, of the interval/. Now, for eachm = 1,..., M, the
definition of the interval’, yields

2 . 2 *
o= gnl" =, min |o—qf, zel.

The boundary points are selected so as to create intervals which are open to the left and closed
to the right.
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Therefore,

(I)F Il,.. IM,ql,...,qM) .. IM7q1,...,qM)

_ /\x—%Af Jz =3 /Ix—%Af)

,,,,,
=1,...,

-----

@ > o

Thus, given the representation leveis. . ., qur, the cellsl, . . . | I}, are given by
=(A:,B)], m=1,....M
with

A=A A = %L%E@,7n:ZHWM.

An iterative process

Imagine that you need to minimize the functiéh: R? x R? — R wherep
andq are positive integers. Although this is a complicated function, assume that
it is fairly easy to perform the following two minimizations:

e For eachz in R?,

Minimize H(x,y) with respect tay € R?
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with solutiony*(x), i.e.,
H(z,y"(x)), < H(w,y), yeR.
e For eachy in R,
Minimize H(x,y) with respect tac € R?

with solutionz*(y), i.e.,

H(z(y),y) < H(z,y), xR

On the basis of this information the following two-stéprative algorithm
suggests itself very naturally:
Pickx; in R? and sety, = y*(«;), so that

H(zy,y,) < H(z1,y), yeRL
Next, withxy, = x*(y,), it is plain that
H(m27y1) S H(wvy1)7 T c va

whence
H(Qﬁg, yl) S H(wlu yl)

Similarly, if we sety,, = y*(x»), then

H(.’BQ, yg) < H<w27 yl)

Repeating this procedure yields a sequefies,, y,,), n = 1,2,...} in R? x
R? through
Ln+1 = w*(yn) and Yot1 = y*(mn-i-l)'

By construction we get

H(wn+1, yn) < H(wna yn)

and
H($n+1, yn+1) S H(mn-‘rla yn)
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foralln = 1,2,.... It follows that the sequenceH (x,,,y,,), n = 1,2,...} is
non-decreasing, hence its limit

L= nhjgo H(xn41,Y11)
always exists. A number of natural questions arise:
1. Isit the case that
L =min (H(xz,y), =z cRP yecR).

2. Is there a pointx*, y*) in R? x R? such that

lim (mn+17 yn+1) - (m*’ y*)

n—oo

3. Isit the case then that
H(x*,y*) = L.

Thes developments of the two previous sections suggeastiative approach to
solving the quantization problem as we identify

$<—(Il,...,]M),

Y — (QL---aQM)
and
H(fB,y) H(I)F'(Ilv7[7)’7,7QI177QM)

Uniformly distributed samples revisited

The rv X is uniformly distributed orY if its probability density functiony is
given by
0 if <A
f@)=4 55 if A<z<B

0 if B < x.



(©2008-2012 by Armand M. Makowski 10

We shall apply the iteration process outlined above:
Start with the celld + 1, ..., I, with

Ly = (Am, Bn], m=12,... M.

In that case, the best representation levels take a particularly simple form: For
eachm =1,..., M, we have

m X
. fAm Foadr
Qm - 1

ol peade

ff: xdx

Ly da
B2 _AQ
2(Bn, — An)

A+ B,
(©) e

so thatg?, is the mid-point of the interval,,.
Next, consider the representation levgls. . . , ¢, with

A<q,...<qu < B.

As indicated earlier, the best corresponding cells are the intefyals. , I, of
the form
= (A,Bx], m=1....M
with
dm—1 + qm

A=A, A=
2

m=2,...,M.

A classical calculation of the signal-to-quantization-noiseratio

Consider theiniformquantizeQ" = (I}, ..., Iy;; ¢}, ..., q},). Foreachn =
1,..., M, whenever lies in the intervall* , we have

e(Q%a) =Q"(x) —x=qp —x
ang/, being the midpoint of the intervdl}, it follows that

B-A
2M

|z —qp| <



(©2008-2012 by Armand M. Makowski

11

As aresult, the nX — Q*(X) takes values in the symmetric interval

S B-A B-A
T oM 7 2M

It is easy to see that if the densityis sufficiently smooth and/ is sufficiently

large? then the probability distribution of the t¥ — Q*(X) is well approximated
by the uniform distribution on the intervdl Thus,

E[QuX)P] = [ 2o

(10)

IM B— A\*®
~ 3(B-A) 2M
so that

2 E .
Finally,

SQNR<QUSX) = E[|€(QU’X)|2}
(11)

It is customary to write

M =28

2As the calculations given at the end of the writeup show, these conditions have to be read to
saying that the staircase approximatiorf@nchored at the point/$+mBT‘[A m=20,1,...,M—
1 is indeed a (reasonably) good approximatioryf of
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whereR is the size of the binary representation\df With this notation we get
SQNR(Q“; X) ~ C(X) - 2*#
where the first factor E[X?)
C(X) = 12m

is determined only by the source, while the second faz¥éexpresses the coarse-
ness of the approximation of the quantizer. Thus,

SQNR(Q"; X)yp ~ 10log,, C(X) + 20R - log,, 2 (dB)
(12) = 10log;, C(X) +6.02- R (dB)

as we recall thalbg,, 2 = 0.30102999 . . .. Adding one extra bit means two levels
with the net result that the SQNR increases(¥/dB.

Companding — Non-uniform quantizers through composition

With A < B, define the interval = (A, B]. Assume given a continuous
mapping® : I — I which isstrictly monotone increasingith

A=®(A) and B=3d(B).

Thus, ® puts the intervald and into one-to-onecorrespondence. The case of
interest is wher is nonlinear.

_ Let X denote a rv with a non-uniform distribution on the interval With

X := ®(X), the rv X is distributed on the interval. We shall quantize its

samples by means of the uniform quantizer for the inte?yahmely
QU= (1, ..., I\ 4, - dy)

with cells B o
I = (A . Brl, m=1....M

and representation levels

where
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This uniform quantize@“, through the intermediary ob, produces aon-
uniformquantizer) for X by setting

Oz) == o (Q“U@(g;))) L zel

This procedure is known asompanding an abbreviation focompessing fol-

lowed by exanding
It is easy to check that this procedure indeed defines a quaiifer the
interval I with cells 1, ..., I, and representation levejs, . . ., ¢i; given by

L= '(I%) and g, :=®'(q%), m=1,..., M.
The intervall,, is of the form(A4,,,, B,,] with endpoints
Ap=®'(4A%) and B, =d 1(B").

In short,
Qx)=d ' (q%), z€l,, m=1,...,M.

The function® is selected so as to capture key features of the distributioh of
e.g., its skewness. This is done by trial and error, by using functions that belong
to well structured classes of functions. This approach obviates the need to solve
the quantization problem, usually a difficult task, either directly or through the
iterative procedure outlined earlier. While companding may vyield a sub-optimal
qguantizer (with respect to the mean-square distortion metric used earlier), its ro-
bustness and ease of implementation are traded for acceptable performance.

Fixm =1,..., M. By construction, we have

By — Al = ®(B,,)— ®(A,)
(13) = / ' (z)dx
Im
under weak differentiability assumptions. Now note that
~, ~ B-A
BY — A = ———
m m M

while
/ &' (x)dr = (Bp — Am) P (qm)-

Im
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Comparing we see that

B-A
—— ~ (B, — A,,)%(q,,
e )P (4m)
so that ~
B—-A
B, — A, ~ )
M (gm)

The p and A-laws

In practice the interval = (A, B] is symmetric with respect to the origin with
A = —Bfor B > 0, the intervall coincides with/, and the compressor is add
strictly increasing and continuous functién: 7 — I with

O(—a) = —B(z), |2] < B

and
d(£B) = £B.

Companding has been deployed in telephone networks as part of the PCM
format. Two standards have emerged: Thkaw is used in the U.S, Canada and
Japan, while thed-law has been adopted in Europe. They are briefly discussed
below.

With 1, > 0, the p-law corresponds to the mappidy, : [-B, B] — [—B, B]
given by

In (1+ k)
(T
Foru = 0, we find®,(z) = x on the interval— B, B] and companding reduces
to uniform quantization oi.

With A > 1, the A-law is defined through the mapping, : [-B, B] —
[— B, B] given by

(14) P, (x) = -sgn(x), |z|<B

A x| -sgn(z)  if <L
(15) Py(z) = Lem(al))
—+In - . x

with A > 1. The valueA = 1yields®4(x) = x on the interval— B, B], in which
case companding reduces to uniform quantizatioii.on
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Approximating the probability density function of the quantization noise un-
der a uniform quantizer

Pickt in the intervalJ where

tﬁ__B—AB—A
a oM 7 oM |’

By standard probabilistic arguments,

Ple(Q"X) <t = ZPXeI“ Q" X) <]

M
= PX e I, Q"(X) - X <{]
1

m=

S

= > PXelyq—X<d

m=1

S

= Y PIXellqy—t<X]

m=1

S

= Y PJAL, <X <BY.qh—t<X]

m=1

= Y Plg,—t<X < By

<

m=1
M BY,
(16) = > | fla)de
m=1" dm—t

as we have used the fact thgf is the midpoint betweed? and B} (which are
themselves'%f“ apart of each other), so that

A' < gh —t< B telJ.

If the probability density functionf of X is sufficiently smooth and/ is
sufficiently large, then the approximation

f@) = flay), vely,m=1..M
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is likely to hold since each of the intervaly, . . ., I}, is small. Reporting this fact
into the result of the earlier calculations we get

M BY,
Ple(@sX)<t] = Y [ flo)de
m=1"am—t
M BY,
~ “Vd
mzl/q%_tf(qm) x
M
= > fgh) (By — (g4 — 1))
m=1
X (B-A
(17) = ;ﬂqm)( SN +t>
since
- A
(18) - S
Therefore,
M — A
Ple(Q"X) <t] =~ (W;f ) oM H)
M B A 1 M
- () st
(19) ~ %+B_A~t, teld

The last step leading to (19) relies on the approximation argument used earlier but
in the following reversed way: We see that

M

;f(Q%)BT_A = > | flap)dz



©2008-2012 by Armand M. Makowski 17

_ /If(x)d:p

(20) -1

since a probability density function integrates to unity. It is now straightforward
to see that (19) is the probability distribution function of a rv which is uniformly
distributed onJ.

SQNR under companding

Let @ denote the non-uniform quantizer obtained by companding through the
compressof : (A, B] — (A, B].

E[@x)?] = 3 / (Q(x) — 2)*f(x)dz

12
[]=
~
=
g
T
=
3
|
&
e
IS
&

m];l
(21) = Y flam)
since

(22) =




