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ENEE 420
FALL 2012

COMMUNICATIONS SYSTEMS
SAMPLING

In these notes we discuss the sampling process and properties of some of its
mathematical description. This culminates in the celebrated Shannon-Nyquist
Sampling Theorem.

Rectangular pulses

With 7 > 0, the rectangular pulse : R — R is defined by

1 ifo<t<r

p-(t) =
0 otherwise.

Fourier analysis of rectangular pulses

For eachf # 0 in R, straightforward calculations show

Pf) = / P (t)e 320t

= /T e 2t gt
0

e—j27rf7' -1
- —j2nf
(1) — Sln<7TfT) . e*jﬂ'fﬂ'
mf

while

Pf)=7, f=0
Therefore, .

% ceITIT i £ 0

(2 P.(f) =

T if f=0.
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From now on, the parametersandT, are selected so that< = < Ty, and
we write f, = Ti

Throughout, we use the notatidn, to denote the summation;, _,,, over
all integers. o

Train of rectangular pulses

The train of pulses associated wijthis the signat, : R — R given by

e (t) = kaf(t —kT,), teR.

The signak. being periodic with period, it admits a Fourier series representa-
tion, namely

_ J2mk fst
e (t) = ZkaT(/{)e , teR

with Fourier coefficients given by

I :

a-(k) = —/ pr(t)e 2Rt gy
TS 0
1
= TPT(ka), k=0,+1,+2,...

By virtue of (2) we find

A SERLT) omymhfT if k= £1,42, ...

Ts wkfs
(3) o (k) =
T if £=0.
It is now plain that
0 ar(k) o
4 = BRIt e R
(4) =) e e

Natural sampling

Letg : R — R denote an information-bearing signalatural samplinggives
rise to the signagn.; - : R — R defined by

gNat,T(t) = CT<t)g<t) = kaT(t - kTS) : g(t)7 t € R
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Its Fourier transform is given by

Grat,r(f) = /RgNat,T(t)ej%ftdt
e (t)g(t)e 2™t dt
<Zk047(k)ej2”kfst> g(t)e ¥t
kOéT(k:)Ag(t)ejZﬂkfste_j2“ftdt

ar(h) [ glt)e Ik as
R

ar(k)G<f - kfs)v f € R.

—

k

I
M M M

) =

k

As a result, we also find

GNat,T(f) / gNat,T(t) . €7j27rftdt
R

T T
©) = > W6 kp), ser
Ideal pulses

It may seem natural to model an instantaneous (or ideal) pulse (at tatg
as a mapping (or function): R — R such that

0 if t#£0

p(t) =
1 if t=0.

Unfortunately, such a definition is not a useful one due to the following fact: From
the point of view of Fourier analysis, the functipns indistinguishable from the
identically zero function.

Instead, we model an ideal pulse by a Dirac funcionR — R. We draw
attention to the fact that although we present the pdilas if it werea function
R — R, this is far from being the case! The terminology is an accepted one and
we shall use it throughout.
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Formally, we can compute the Fourier transform of the Dirac function as

(7) /R S(t)e 9 idt =1, feR.

Train of ideal pulses

In analogy with the notion of train of natural pulses, we can associate with
ideal pulses the corresponding notion of pulse train. We define such a train of
ideal pulses as the mapping: R — R given by

cs(t) = Zké(t —kT,), teR.

Again caution is in order: While the trairy of ideal pulses may have been pre-
sented as if it were a mappirig — R, this is not so due to the (unresolved)
conceptional difficulties mentionned earlier. Yet, despite the fact that such a train
of ideal pulses has only been vaguely defined (if at all), this notion does serve a
useful purpose, albeit a formal one, as will become apparent below.

Again proceedindgormally, we compute the Fourier transform gfas

Cs(f) = /Rc(;(t)e_j%ftdt
- /R (Zké(t—kTs)) e~i2mt gy
- Zk /R 5(t — kTy)e ¥/t qt

®) = Y e feR

Ideal sampling

Letg : R — R denote an information-bearing signal. Ideal sampling produces
the signalgigea : R — R given by

J1deal (t) = G5 (t)g(t)
(9) = Zkg(kTs)é(t — kT,), teR.



©2008-2012 by Armand M. Makowski 5

Its Fourier transform is therefore given by
Greal(f) = / Graeal(t)e 72 dt
R

— Zkg(kTs)/5(t—kTs)e_j2”ftdt
R
(10) - Zkg(kTs)e*ﬂ“f’fTs fER.

This expression turns out to be not too useful for our purposes, a state of affairs
which prompts us to seek a different approach for evaluating the Fourier transform
Graeal- Although the expressions to be given are formal expressions for the Fourier
transform of an object which has not been fully defined, they will turn out to be
useful for understanding the properties of the sampling process.

From natural to ideal pulses

For eachr > 0, the normalized rectangular pulge: R — R is defined by

Lijfo<t<r
o Dot : sts
i) =0 —

0 otherwise.

Its Fourier transform is simply given by

sin(nfr) | g=infr if f£0

PT wfT
Py =T
1 if f=0.
The convergence
e Pe)
lim P (f) =lim——= =1, feR

and the expression (7) for the Fourier transform of a Dirac function together sug-
gest that the ideal pulgecan be thought of as the limit of the normalized puylse

asT goes to zero. Conversely, the normalized puytsevith smallr can be inter-
preted as a good approximation for the ideal puls@/e symbolically summarize
such a convergence as

(11) fim pr = 0.
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We make no attempt at giving a precise meaning to the convergence (11). In fact,
a precise definition is certainly fraught with difficulties, some of which are already
apparent from the pointwise convergence

0 ift#£0
lim p? (1) =

7i0 oo if t=0.

Resolving these difficulties is beyond the scope of these notes.

From natural to ideal sampling

Let 7 go to zero: Since

sin(mk fs7)

I -1, k
10wk far k70
it is plain that
k
lim P*(kf,) = lim k) _ 1 k04149
710 710 T

Therefore, formally we conclude that

lim c- (1) — lim @T(k)eﬂnkfst
710 T 710 kT
= 3 (1 2B e
k 710 T
1 )
_ J2mkfst
(12) - e

On the other hand, formally wielding (11) we find

(13) = ¢(t), teR.
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Combining we conclude that
_ 1 2k fst
Zké(t — kT,) = T ;ej , teR.

This (formal) relation often appears in the literature, and is knowRasson’s
summation formula

From train of natural pulses to train of ideal pulses

Next, we see that

Graea(f) = 171?61 M
T ar (k)
- 17}{51 kT ' G(f - kfs)
(14) - %, (™) e -kn) ser
In short, X
(15) Ghaeal(f) = ?ZkG(f —kfs), feR

Recoveringg from gna -

Assume the signa} : R — R to be band-limited with cut-off frequendy’,
i.e.,
(16) G(f)=0, [f]>W.
The frequency
INyq = 2W

plays a particular role and is known as thgquistrate forg.
Under the condition (16) the translaté§f — kf,) andG(f — (fs) do not
“overlap” if k # ¢ whenever the condition

(17) 2V < fs

holds. More precisely, under (16) and (17), the translates— & f;) andG(f —
(fs) with k& # ¢ cannot be simultaneously non-zero. As a result, in the expression
for the Fourier transform ofx.: -, namely

Crair(f) =) ar(k) - G(f —kf), [ER,
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at mostone of the term&7(f — kfs), k = 0,4+1,42, ..., is ever non-zero for a
given frequencyf under the condition (17).
With this in mind, consider a lowpass filtéf with cutoff frequencyiV,,, i.e.,

H(f) =0, [|f| > Wh.

If we selectiV, so that
(18) W<W,<fs—W,

then

H(f) - Graer(f) = D ar(k) - H(f)G(f ~ kf.)
(19) = a-(OH(G(f), [€R

since for allk = £1, ..., we have

H(f)G(f—kfs)=0, feR

In particular, if we take the lowpass filtéf to be
{ Lt |[fl<W,

0 otherwise,

H(f) =

then we obtain -

H(f) - Gnatr(f) = FG(f), feR.

Thus, the lowpass information-bearing signat R — R can be recovered fully
from gnas - DY linear processing.

The Shannon-Nyquist Sampling Theorem

We now show that not only camalso be recovered fromg..;, but that this
signal can be reconstructed from the samglgg7), £ =0, £1,...}.

Here as well we assume the siggalR — R to be band-limited with cut-off
frequencylV. Moreover, the condition (17) is enforced. From (15) we readily

conclude that .
Graeal(f) = TG(f)a fl<wW

so that
G(f) = TSGIdeal(f)7 |f| S |44
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Reporting this fact into (10) we conclude that
G(f) =Ty gkT)e M |fl < W

Since the signal is band-limited with cut-off frequencyV, this last relation
already shows that theamplesshould be sufficient to reconstruct the original
signalg! By Fourier inversion, we get

o) = [ Gipea
R
W .
_ / Gf)e I gt
-W
v 2r fkT. 2 f
— —j2m s j2mft
= /W (Tszkg(kTs)e > e?“mhdt
Y s
_ J2m f(t—kTs
— Tszkg(kTs) /_We dt

eI2m(t=kT)W __ ,—j2m(t—kTs)W

(20) = Ty 9(kT,)- jor(t — kTy)

so that i (20t — KT)W)
(21) g(t) =Ty g(kT.) - = ;Et—mi . tER.

This expression is sometimes written in terms of the Nyquist rate for the gjgnal
namely

sin (7(t — KT%) fnyq)

g(t) = Ty g(kT,)- )
(22) = Tifwya- ) 9(KT) -sine((t — k1Y) fry), tER
where we have defined
sinc(t) = sinﬂ(;rt)’ teR.

With f; = fxyq, We getl fxyq = 1 and the last relation becomes
g(t) = Zkg(kTs) -sinc ((t — ET%) fuyq)
(23) - Zkg(k;Ts) -sine (fayqt — k), t€R.




