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COMMUNICATION SYSTEMS

ANSWER KEY TO TEST # 1:

1.

1.a. As shown in class, H2(u) = H2(M) = log2 M .

1.b. The optimal code C?
2L : {1, . . . , 2L} → {0, 1}? is the one that corresponds to the

full tree with 2L terminal nodes (labelled 1, . . . , 2L). Every codeword having length L,
this code is indeed optimal since its average code length coincides with the entropy of
the source, namely H2(M) = log2 M = log2

(
2L
)

= L. One way to describe C?
2L is as

follows: For each m = 1, . . . , 2L, write C?
2L(m) as the L-bit binary expansion of m− 1.

1.c. Consider now the general case M = 2L +K with integers L and K satisfying

L = 1, 2, . . . and K = 0, . . . , 2L − 1.

With code C?
2L : {1, . . . , 2L} → {0, 1}? described in Part 1.b, we first set

C?
M(m) = C?

2L(m), m = 1, . . . 2L −K.

Next, on the remaining range m = 2L −K + 1, . . . , 2L +K, group the symbols in pairs,
say

2L −K + 2k + 1 and 2L −K + 2(k + 1), k = 0, 1, . . . , K − 1.

The corresponding codewords are now defined by

C?
M(2L −K + 2k + 1) = [C?

2L(2L −K + k), 0]

and
C?
M(2L −K + 2(k + 1)) = [C?

2L(2L −K + k), 1].

This corresponds to the following procedure (up to a relabeling of the nodes): Starting
with the full binary tree associated with C?

2L (for the alphabet {1, . . . , 2L}), keep the
terminal nodes corresponding to the symbols m = 1, . . . , 2L − K, and at each of the
remaining nodes (which correspond to the symbols m = 2L − K + 1, . . . , 2L for the
alphabet {1, . . . , 2L}), extend the tree by adding its two siblings. This code is optimal
because it will be produced by the Huffman algorithm.
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It is immediate that M − K codewords have length L, and that 2K codewords have
length L+ 1, so that

L(M) =
1

M

(
(2L −K)L+ 2K(L+ 1)

)
=

1

M

(
(2L +K)L+ 2K

)
= L+ 2

(
K

M

)
. (1.1)

1.d. To have L(M) = H2(M) means that the optimal code C?
M achieves the entropy

bound. However, we know that this happens if and only if the underlying pmf is of the
form

1

M
= 2−m(x), x = 1, . . . ,M

with positive integers m(1), . . . ,m(M). Obviously this requires m(1) = . . . = m(M) =
m? with m? determined by

1

M
= 2−m

?

.

Put another way, the equality L(M) = H2(M) requires that M be a power of two!

2.

2.a. Here
G = [1111|1] with P = [1111].

2.b. Since C is a linear (5, 1)-block code, we get n = 5 and k = 1, so that there are
24 = 16 distinct cosets.

2.c. To construct the standard array we recall that for this repetition code we have

C = {00000, 11111}.

See table below.

2.d. The binary vector r = (11001) is received. Going to the standard array, we check
that r is in the coset C8 with leader x8 = (00110), and that

(11001) = x8 + 15

so that the decoding will return the codeword 15, hence the binary m̂ = 1 was sent.

2.e. When using a repetition code, Nearest Neighbor decoding is equivalent to majority
decoding. As a result, the received vector r = (11001) is decoded into ĉNear = (11111).
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` Leader x`

1 00000 00000 11111
2 00001 00001 11110
3 00010 00010 11101
4 00100 00100 11011
5 01000 01000 10111
6 10000 10000 01111
7 00011 00011 11100
8 00110 00110 11001
9 01100 01100 10011
10 11000 11000 00111
11 00101 00101 11010
12 01010 01010 10101
13 10100 10100 01011
14 01001 01001 10110
15 10010 10010 01101
16 10001 10001 01110

3.

3.a.

0001001100001110011110001100011011000111011011100 . . . (1.2)

3.b. The resulting bit stream will be

00000 0 00001 0 00000 1 00010 1 00011 0 00010 0 00011 1 00101 0 00111 1

01000 0 00111 0 00100 1 00001 1 01010 1 01011 1 00101 1 01011 0
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N N binary Phrase Codeword

0 00000 (empty)
1 00001 0 00000-0
2 00010 00 00001-0
3 00011 1 00000-1
4 00100 001 00010-1
5 00101 10 00011-0
6 00110 000 00010-0
7 00111 11 00011-1
8 01000 100 00101-0
9 01001 111 00111-1
10 01010 1000 01000-0
11 01011 110 00111-0
12 01100 0011 00100-1
13 01101 01 00001-1
14 01110 10001 01010-1
15 01111 1101 01011-1
16 10000 101 00101-1
17 10001 1100 01011-0

3.c.

00000 0 00001 0 00000 1 00010 1 00011 0 00010 0 00011 1 00101 0 00111 1

01000 0 00111 0 01000 1 00001 1 01010 1 01011 1 00100 1 01011 0

There is no reason for the receiver to conclude that a transmission error has occurred:
Indeed, although 00101 1 has been received incorrectly as 00100 1 , this error does not
prevent from the decoding operation to proceed, resulting in 0011 being decoded instead
of 101.
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N Received codeword N binary Decoded phrase

0 00000 (empty)

1 00000-0 00001 0
2 00001-0 00010 00
3 00000-1 00011 1
4 00010-1 00100 001
5 00011-0 00101 10
6 00010-0 00110 000
7 00011-1 00111 11
8 00101-0 01000 100
9 00111-1 01001 111
10 01000-0 01010 1000
11 00111-0 01011 110
12 01000-1 01100 1001
13 00001-1 01101 01
14 01010-1 01110 10001
15 01011-1 01111 1101
16 00100-1 10000 0011
17 01011-0 10001 1100

3.d.

00000 0 00001 0 00000 1 00010 1 00011 0 00010 0 00011 1 00101 0 00111 1

00001 1 11000 0 00111 0 01000 1 01010 1 01011 1 00101 1 01011 0

There is reason for the receiver to conclude that a transmission error has occurred:
The tenth received codeword 11000 0 cannot be decoded because it calls for adding bit
value 0 to the pattern to be found at N = 24 = 11000 which is larger that 11, and so
has not beeen constructed yet!

It should be pointed out that the previous codeword 01000 0 is already transmitted

in error as codeword 00001 1 . However, as in Part 3.c the receiver will not be able to
conclude that a transmission error has occurred.
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N Received codeword N binary Decoded phrase

0 00000 (empty)

1 00000-0 00001 0
2 00001-0 00010 00
3 00000-1 00011 1
4 00010-1 00100 001
5 00011-0 00101 10
6 00010-0 00110 000
7 00011-1 00111 11
8 00101-0 01000 100
9 00111-1 01001 111
10 00001-1 01010 01
11 11000-0 01011 Cannot decode
12 01111-0 01100
13 01000-1 01101
14 01010-1 01110
15 01011-1 01111
16 00101-1 10000
17 01011-0 10001

4.

4.a. The encoding
C(m) = (Par(m),m,m) , m ∈ Hk (1.3)

provided by the code C : Hk → Hn can be expressed as

C(m) = mG

where the generating G is the k × (2k + 1) matrix given by

G = [P |Ik] with P =
[
1tk|Ik

]
.

4.b. Here it is plain that the (k + 1)× n matrix H is given by

H =

[
Ik+1

∣∣∣ 1k
Ik

]
.

4.c. Note that

H t =

[
Ik+1

1tk|Ik

]
,
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so that

C =
{
x ∈ Hn : xH t = 0k+1

}
=

{
(x,y, z) ∈ Hn :

x ∈ {0, 1}
y, z ∈ Hk

and
x+ z1tk = 0
y + z = 0k

}
=

{
(x,y, z) ∈ Hn :

x ∈ {0, 1}
y, z ∈ Hk

and
x+ Par(z) = 0

y = z

}
= {(Par(z), z, z) : z ∈ Hk} , (1.4)

as expected.

4.d. With c = (Par(z), z, z) for some z in Hk, we have c = 0n if and only if z = 0k.
With this in mind,

dH(C) = min

(
wH(c) :

c 6= 0n
c ∈ C

)
= min

(
wH(Par(z), z, z) :

z 6= 0k
z ∈ Hk

)
= min

(
Par(z) + 2wH(z) :

z 6= 0k
z ∈ Hk

)
= 3 (1.5)

as easily seen through the following argument: First it is plain that dH(C) ≤ 3 since

dH(1, z, z) = 3

if we select z in Hk with exactly one non-zero component. We now show that it is not
possible to find z 6= 0k in Hk such that

dH(1, z, z) = 2.

This would amount to
Par(z) + 2wH(z) = 2.

If Par(z) = 0, then 2wH(z) = 2, i.e., wH(z) = 1 and so Par(z) = 1, a contradiction. On
the other hand, if Par(z) = 1, then 2wH(z) = 1 and a contradiction again arises.

It is also not possible to find z 6= 0k in Hk such that

dH(1, z, z) = Par(z) + 2wH(z) = 1.

Indeed, this requirement leads necessarily to wH(z) = 0 and Par(z) = 1, with the latter
contradicting the former!

4.e. Because dH(C) = 3 = 2 + 1, all error patterns with exactly two bit reversals will
be detected. Some error patterns with three bit reversals will not be detected, e.g. with
k = 3, m = (1, 1, 1), c = (1, 1, 1, 1, 1, 1, 1) and r = (0, 0, 1, 1, 0, 1, 1) – Contrast this with
the fact that all odd-numbered bit reversals would be detected if bit parity check codes
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are used. Some error patterns with four bit reversals will be detected, e.g., with k = 3,
m = (1, 1, 1), c = (1, 1, 1, 1, 1, 1, 1) and r = (0, 0, 0, 1, 1, 0, 1) – Again contrast this with
the situation for bit parity check codes.

4.f. Because dH(C) = 3 = 2.1+1, a single error (or bit reversal) will always be corrected
under Nearest Neighbor decoding.


