ENEE 446: Digital Computer Design
Fall 2018 Handout #9

Programming Assignment # 1 Due: October 1

In-Order MIPS Integer/Floating Point Pipeline

In this assignment, you will become familiar with the MIPS integer and floating point pipelines.
You will create a cycle-accurate simulator of an in-order MIPS processor, called mipsim, that
supports 32-bit integer and floating point operations. Your simulator will be very basic: it will
model all the necessary pipeline interlocks to enforce correct pipeline execution, but it will not
support out-of-order execution, data forwarding, nor branch prediction.

1 Files

The first thing you should do is download the files from
http://www.ece.umd.edu/class/eneed446.F2018 /progl. = There are 18 files: asm.c, main.c,
pipeline.c, pipeline.h, fu.c, fu.h, output.c, output.h, Makefile, io_pipe.fu, simple.s,
simple.io.out, vect.s, vect.io.out, newton.s, newton.io.out, cos.s, and cos.io.out.

asm.c is an assembler for the MIPS ISA which your simulator will implement (more about
the assembler and the ISA later). main.c, pipeline.c, pipeline.h, fu.c, fu.h, output.c, and
output.h are the simulator source files. Much of the simulator’s internals, like the functional units
and the simulator’s output generator, have been implemented already and are provided in these
files. Your assignment is to build the main control module of the pipeline (most of the changes will
go in pipeline.c). Makefile is a unix make file which will produce the binaries asm and mipsim.
And io_pipe.fu is a functional unit configuration file (more about this later).

In the remaining files, we have provided four example assembly programs. simple.s performs
a simple arithmetic sequence, vect.s performs a vector operation, newton.s finds the left-most
root of a quadratic expression using Newton’s method of root approximation, and cos.s estimates
the cosine of “1” using a Taylor series expansion with 10 iterations. Finally, simple.io.out,
vect.io.out, newton.io.out, and cos.io.out contain the output for the 4 benchmarks, respec-
tively, on a properly functioning simulator.

2 MIPS ISA

You will be simulating the MIPS ISA from Hennessy & Patterson, with some key differences. First,
instead of a 64-bit architecture, you will implement a 32-bit architecture only. In other words,
all registers and data paths are 32 bits wide, and all instructions will operate on 32-bit operands.
Within this 32-bit data size, you will support both signed and unsigned fixed point data types as
well as single-precision floating point data types. Second, you will only support a subset of the



Integer Arithmetic / Logic

add rd rl r2 regrd] = reg[rl] + reg[r2] addi rd r1 imm | reg[rd] = reg[rl] 4+ imm

sub rd rl r2 reg[rd] = reg[rl] — reg[r2] subi rd r1 imm | reg[rd] = reg[rl] — imm

sll rd r1 12 regrd] = reg[rl] << reg[r2] slli rd r1 imm | reg[rd] = reg[rl] << imm

srl rd rl r2 regrd] = reg[rl] >> reg[r2] srlird rl imm | reg[rd] = reg[rl] >> imm

and rd rl r2 regrd] = regrl] & regr2] andi rd r1 imm | reg[rd] = reg[rl] & imm

orrd rl r2 reg[rd] = regrl] | reg[r2] orird rl imm | reg[rd] = reg[rl] | imm

xor rd rl r2 reg[rd] = reg[rl] " reg[r2] xori rd rl imm | reg[rd] = reg[rl] ~ imm

slt rd rl r2 reglrd] = (reg[rl] < reg[r2]) slti rd rl imm | reg[rd] = (reg[rl] < imm)

sgt rd rl r2 reg[rd] = (reg[rl] > reg[r2]) sgti rd r1 imm | reg[rd] = (reg[rl] > imm)
Floating Point Arithmetic Memory

add.s rd r1 12 | fpreg[rd] = fpreg[rl] + fpreg[r2] || lw rd rl imm reg[rd] = Mem|reg[rs1] + imm]

sub.s rd r1 r2 | fpreg[rd] = fpreg[rl] - fpreg[r2] || sw rd rl imm Mem][reg[rsl] + imm] = reg[rd]

mult.s rd rl r2 | fpreg[rd] = fpreg[rl] * fpreg[r2] | lLsrd rl imm fpreg[rd] = Mem][reg[rsl] + imm|]

div.s rd r1 12 | fpreg[rd] = fpreg[rl] / fpreg[r2] || s.s rd rl imm Mem(reg[rsl] + imm] = fpreg|rd]

Control

j off pc = pc + off + 4

jrrl pc = reg[rl]

jal off reg[31] = pc, pc = pc + off + 4

jalr r1 reg[31] = pc, pc = reg[rl]

pc = (reg[rl] == 0) ? pe+imm+4 : pc+4
pc = (reg[rl] = 0) ? pe+imm+4 : pc+4
stop the simulation

beqz rl imm
bnez rl imm
halt

Table 1: Instructions from the MIPS ISA supported by the simulator.

MIPS ISA. A summary of these instructions is given in Table 1, including the assembly notation
and the C-expression for each instruction. In addition to the arithmetic/logical instructions listed
at the top of Table 1, you will also support unsigned versions of add, addi, sub, subi, seq, seqi,
sneq, sneqi, slt, slti, sgt, and sgti. (The mnemonic for these unsigned instruction versions
will include the letter “u,” for example addu and addui). Finally, although all immediate values in
MIPS’ branch and jump instructions are left-shifted by 2 (see Hennessy & Patterson), your control
instructions SHOULD NOT perform the left shift.

Notice all the instructions in Table 1 except for one exist in the normal MIPS ISA. The instruc-
tion we’ve added is halt. As its name implies, when your simulator executes a halt instruction, it
should terminate the simulation.

3 asm: An Assembler for the MIPS ISA

We have provided an assembler, asm.c, that supports all the instructions in Table 1. (Actually, it
supports even more instructions, but you can ignore any instruction that hasn’t been described in
Section 2). The asm.c file is fully functional, and you will not need to make any modifications to
this file. Simply use the Makefile to make the binary asm from the asm.c source file.

The format for assembly programs is very simple. A valid assembly program is an ASCII file
in which each line of the file represents a single instruction, or a data constant. The format for a



single line of assembly code is:

label<tab>instruction<tab>fieldO<tab>fieldl<tab>field2<tab>comments

Here’s a simple example of a full assembly program:

addi R1 RO #5 load regl1] with 5
start  subi R1 R1 #-1 decrement regl[1]
l.s FO RO varil loads fpregl[O] with value stored in varl
add.s F2 FO FO double fpregl0]
s.s F2 RO varl put fpreg[0] back
beqz R1 done goto done when reg[1]==
J start
done halt
varl .df 32.0 Declare a variable, initialized to 32

The leftmost field on a line is the label field which indicates a symbolic address. Valid labels
contain a maximum of 6 characters and can consist of letters and numbers. The label is optional (the
tab following the label field is not). After the optional label is a tab. Then follows the instruction
field, where the instruction can be any one of the assembly-language mnemonics described in
Section 2. After another tab comes three fields, also separated by tabs. Each field represents either
a register identifier or an immediate value. Register identifiers begin with the letter “R” or “F”
as in “R0” or “F0” for integer and floating point registers, respectively. Immediates are specified
as a constant decimal value preceeded by a “#” sign as in “#5.” For the memory and control
instructions, the imm field can either be a decimal value preceeded by the “#” sign, or a label can
be used as in “varl.” After the last field is another tab, then any comments. The comments end
at the end of the line.

In addition to instructions, lines of assembly code can also include directives for the assembler.
A directive tells the assembler to put a constant value into the place where an instruction would
normally be stored. We support two directives, “.dw” and “.df,” for storing integer and floating
point constants, respectively.

4 Pipeline Simulator

Your assignment is to create a cycle-accurate simulator of an in-order MIPS processor that supports
32-bit integer and floating point operations. We have provided some code to get you started in
fu.c and main.c. This code will make your life easier since you won’t have to write the whole
simulator from scratch, and it will enforce some coding disciplines that ensure you actually simulate
the details of the processor pipeline. The following sections describe both the code we provide and
the code you will write in greater detail.



4.1 Pipeline Structure

We have provided pipeline register data structures specified in the file, pipeline.h. To enforce
proper pipeline simulation, you should use these structures in your simulator. Here is the main
processor structure, state_t:

typedef struct _state_t {
/* memory */
unsigned char mem[MAXMEMORY] ;

/* register files */
rf_int_t rf_int;
rf_fp_t rf_£fp;

/* pipeline registers x/
unsigned long pc;
if_id_t if_id;

fu_int_t *fu_int_list;
fu_fp_t *fu_add_list;
fu_fp_t *fu_mult_list;
fu_fp_t *fu_div_list;

wb_t int_wb;
wb_t fp_wb;

int fetch_lock;
} state_t;

Both the integer and floating point pipelines pass through four types of pipeline stages: fetch,
decode, execute, and writeback. The “pc” field and “if_id” structure contain the pipeline registers
for the fetch and decode stages, respectively. These pipeline registers are shared by both integer
and floating point pipelines, so only one instruction (integer or floating point) can be fetched and
decoded per cycle. The “fu_int_list” pointer points to the pipeline registers for the integer execute
stage(s), and the “fu_add/mult/div_list” pointers point to the pipeline registers for the floating
point add, multiply, and divide execute stages. (We will discuss these pipeline registers further in
Section 4.2). And finally, the “int_wb” and “fp_wb” structures contain the pipeline registers for the
writeback stages of the integer and floating point pipelines, respectively. At most 1 integer and 1
floating point instruction (i.e., 2 instructions total) can writeback per cycle.

In addition to the pipeline registers, the processor state also contains memory, “mem,” and
two register files—one for the integer pipeline, “rf_int,” and another for the floating point pipeline,
“rf_fp.” Each register file contains an array of registers. Notice the integer registers are of type
“int_t,” as defined in fu.h, which allows for a signed or unsigned interpretation of each register’s
contents through a “union” construct. This permits both signed and unsigned arithmetic operations
on the integer register data.



4.2 Simulator Loop, Functional Units, and Output Generator

Included in the download files are three modules that contain code we provide: main.c, fu.c, and
output.c. This section describes the functionality implemented in these modules. Note, while the
code we provide is fully functional, you are welcome to modify most of it. In fact, to complete the
assignment, you will need to make at least a few modifications to our code in order to integrate
it with your code. The only code you cannot modify is the output generator code which we will
discuss in Section 4.2.3.

4.2.1 main.c

main.c contains the main simulator loop. This loop calls the fetch, decode, execute, and
writeback functions you will provide to simulate each type of pipeline stage (see Section 4.3).
One iteration through the main simulator loop advances each pipeline stage by 1 cycle, and corre-
sponds to 1 simulated processor cycle. Notice the pipeline stages are called in reverse order. This
ensures each instruction propagates only 1 pipeline stage per cycle. (Calling the stages in forward
order would allow a new instruction to propagate all the way down the pipeline in 1 iteration).
main.c also contains a function to parse the command line arguments. The simulator expects
two arguments: the assembled program file preceeded by the flag “-b,” and the functional unit
configuration file preceeded by the flag “-0.”

4.2.2 fu.c

fu.c contains a significant amount of code that implements the integer/floating point functional
units and the simulation of their execute stages. The functional unit implementation consists of 4
types of routines. First, state_create reads a functional unit configuration (FU config) file, and
creates and intializes the functional units accordingly. We have provided an FU config file, called
io_pipe.fu. Each line in the FU config file specifies a functional unit to be simulated, providing
the name and type of functional unit. There are four valid functional unit types: INT, ADD,
MULT, and DIV (each type has a corresponding linked list in the pipeline register data structure
described in Section 4.1). ADD executes the add.s and sub.s instructions, MULT executes the
mult.s instruction, and DIV executes the div.s instruction. All remaining instructions are of type
integer and execute in INT-type functional units. Each line in the FU config file also specifies a
list of numbers, one for each pipeline stage that specifies the number of cycles in that stage. For
example, the floating point multiplier in io_pipe.fu contains 4 1-cycle stages.

Second, an instruction can be “issued” into one of the functional units via the issue_fu_int or
issue_fu fp routines. The former is used for integer instructions, and the latter for floating point
instructions. These routines return “0” if the instruction is successfully issued; otherwise, they
return “-1” indicating no functional units of that type are free (i.e., a structural hazard). Third,
the functional units can be advanced one cycle by calling the advance fu_int and advance _fu fp
routines. These routines move previously issued instructions through the functional units’ execute
stages. When execution of an instruction completes, the instruction is placed into the appropriate
writeback stage pipeline register, int_wb or fp_wb, depending on the instruction’s type (integer or
floating point, respectively). Finally, the fu_int_done and fu_fp_done routines test for instructions
still in-flight in functional units of type integer or floating point, respectively, and return TRUE
when one or more instructions are still in flight or FALSE when no instructions are in flight.



In addition to implementing the functional units, fu.c also provides a routine for decoding
instructions, decode_instr, which takes two arguments, an instruction and a pointer to a flag
(use_imm), and returns a pointer into the instruction table defined at the top of fu.c. Each in-
struction table entry provides 4 pieces of information: name, group number, operation number, and
data type. The group number specifies a group of instructions from Table 1 to which the instruc-
tion belongs. FU_GROUP_INT contains the instructions in the “Integer Arithmetic / Logic” portion
of Table 1. Within this group, the use_imm flag specifies whether the instruction uses an immediate
value (i.e., the right half of the “Integer Arithmetic / Logic” portion of Table 1), or whether the
instruction does not use an immediate value (i.e., the left half of the “Integer Arithmetic / Logic”
portion). FU_.GROUP_ADD, FU_GROUP_MULT, and FU_GROUP_DIV contain the instructions in the “Float-
ing Point Arithmetic” portion of Table 1 (note, both add.s and sub.s belong to FU_.GROUP_ADD).
FU_GROUP_MEM contains the instructions in the “Memory” portion of Table 1, and FU_GROUP_BRANCH
contains the instructions in the “Control” portion of Table 1, excluding the halt instruction which
has its own group, FU.GROUP_HALT. (We also create a special group for NOP instructions; see
Section 4.3.4). Within a group, the operation number specifies the actual decoded instruction.
Finally, the data type specifies either integer (DATA_TYPE W) or floating point (DATA_TYPE_F). We
have provided the routine, perform operation, which shows an example use of decode_instr. In
perform_operation, the add instruction is fully decoded and implemented.

Notice decode_instr uses two macros, FIELD_OPCODE and FIELD_FUNC, to extract opcode fields
from instructions. These macros are defined in fu.h along with others that facilitate extraction of
register specifiers (FIELD_R1/R2/R3), extraction and sign extension of 16-bit signed and unsigned
immediates (FIELD_IMM and FIELD_IMMU, respectively) and 26-bit signed offsets (FIELD_OFFSET).

4.2.3 output.c

output . c contains the output generator routine, print_state, which is called once every iteration
of the main simulation loop. This routine (along with other routines in output.c) dumps the state
of memory, the register files, and the pipeline registers. Your final submitted simulator should use
these routines in their unmodified form; otherwise, we will not be able to grade your simulator. Of
course, you can make modifications to these routines during debugging, but be sure to remove your
modifications before submitting your simulator.

4.3 Your Code

Your job is to write the routines that simulate the pipeline stages in pipeline.c: fetch, decode,
execute, and writeback. You will also need to modify some of the code we provide to properly
integrate your code.

fetch should go to memory and fetch the current instruction specified by the program counter,
and place the fetched instruction into the if_id pipeline register. decode should examine the
instruction in the if_id pipeline register, decode the instruction, and determine whether it can
issue into the functional units. As long as the instruction has no data, control, or structural
hazards (described below), it should issue; otherwise, it should stall. execute should advance all
the functional units by one cycle. And writeback should write the result of any instruction in the
int_wb or fp_wb pipeline registers into the register file. The following describes in detail some of



the issues your code must deal with.
4.3.1 Dealing with Data Hazards

In this simulator, you will stall all data hazards. (Although stalling leads to poor performance, the
goal for this project is to implement simple mechanisms only). Data hazards should be detected
and stalled in the decode stage.

There are two types of data hazards you need to detect and stall: RAW and WAW. (WAR
hazards cannot occur since your pipeline does not perform late reads). A RAW hazard occurs
when the instruction in decode reads a register written by an earlier instruction still executing in a
functional unit. If a RAW hazard is detected, the instruction in decode must stall until the earlier
instruction reaches its writeback stage. We will assume register writes happen on the first half of
the clock cycle while register reads happen on the second half of the clock cycle, so when the earlier
instruction reaches writeback, the dependent instruction in decode can issue on the same cycle. (In
fact, since the pipeline is simulated in reverse order, writeback is performed before decode within
the same simulated cycle).

A WAW hazard occurs when the instruction in decode writes a register written by an earlier
instruction still executing in a functional unit, and the number of execute cycles remaining for
the earlier instruction is larger than the latency of the instruction in decode. (If the instruction
in decode were to issue immediately, the writes would reorder). If a WAW hazard is detected,
the instruction in decode must stall until the number of execute cycles remaining for the earlier
instruction is equal to the latency of the instruction in decode. Note, your simulator should stall
WAW hazards for the minimum number of cycles only. (For example, you should not stall until the
earlier instruction reaches its writeback stage). Furthermore, you can assume the integer pipeline
is a fixed pipeline. Since WAW hazards can only occur in variable pipelines, WAW hazards will
never occur through integer registers, only through floating point registers.

4.3.2 Dealing with Control and Structural Hazards

In this simulator, you will stall all control hazards. When a control instruction enters the decode
stage and issues (after resolving any data and structural hazards), you should immediately set the
fetch_lock flag in the state_t structure to TRUE. This prevents fetch and decode on subsequent
cycles (see the simulator loop in main.c), though you should allow fetch of the sequential successor
immediately following the control instruction. When the control instruction enters writeback, you
should set fetch_lock back to FALSE. So, the processor stalls for the entire time the control
instruction is in-flight. If the control instruction is not taken, you should not update the fetch
stage. However, if the control instruction is taken, you must set the program counter to the target
address and squash the instruction in if_id (i.e., the sequential successor immediately following
the control instruction that was incorrectly fetched).

In addition to data and control hazards, there are two types of structural hazards you must
stall. Once again, detection and stall should occur in decode. First, you should stall if there is no
functional unit available for the instruction in decode. This occurs whenever you try to issue an
instruction, but issue fu int or issue fu fp return “-1.” Second, you must ensure that at most
1 floating point and 1 integer instruction writeback on the same cycle. A structural hazard of this
kind occurs when the number of execute cycles remaining in any earlier instruction still executing



in a functional unit is one less than the latency of the instruction in decode, and both instructions
write to the same register file. This kind of structural hazard can only occur in a variable pipeline
(similar to the WAW hazard). So, structural hazards in the writeback stage need only be checked
for the floating point register file.

4.3.3 Executing Instructions

The functional unit models described in Section 4.2.2 only simulate the timing of instructions; you
must implement the function performed by each instruction separately. We have started this for
you in perform operation, but you must provide the majority of the code. One question is when
should perform_operation occur? Since the code in output.c only prints the instruction field of
each pipeline register, you can call perform operation at any time. One possibility is to call it
in the decode stage upon instruction issue, and modify the functional units to carry the result of
the instruction all the way to writeback. Another possibility is to call perform operation from
within the functional units themselves, perhaps in the first execute stage. Yet another possibility is
to carry the operands for the instruction through the functional units and call perform operation
during writeback. It’s up to you.

4.3.4 NOP Instruction

The NOP instruction is needed to initialize the pipeline register data structures, and to replace or
“squash” the instruction in the if_id pipeline register following a taken branch. You should use
“0” (i.e., an instruction with all 0s) as a NOP instruction. The instruction table in fu.c places
the NOP instruction into a special group, FU_GROUP_NONE. Any instruction with this group number
should be treated as a NOP. Since NOPs do nothing, there is no need to execute them. Hence,
you can throw away any NOP instruction encountered in the decode stage. This saves having to
execute and writeback NOPs, though you will need to fetch and decode them.

4.3.5 Halting

When your simulator encounters the halt instruction, it should end the simulation. Notice, how-
ever, any earlier instruction preceeding the halt should be allowed to complete. So, once you
encounter a halt instruction in the decode stage, you can stop fetching and decoding; however, you
should keep calling execute and writeback until all in-flight instructions drain from the pipeline
and writeback. (Use the fu_int_done and fu_fp_done routines to detect when all instructions have
drained from the functional units).

5 Grading

We will grade your programming assignment by comparing the output of your simulator on each of
the four benchmarks against the output files simple.io.out, vect.io.out, newton.io.out, and
cos.io.out. So, your goal should be to design your simulator such that you get the exact same
output as the output files we’ve provided.



5.1 Academic Honesty

Do not allow any other student to see any of your code. You may however discuss the assignment
in general terms, with the other students. If copying or excessive collaboration is detected in your
submissions, the matter will be referred to the Student Honor Counsel.



