
ENEE 446: Digital Computer Design
Fall 2018 Handout #21

Programming Assignment # 2 Due: November 19

Cache Organization and Performance Evaluation

In this assignment, you will become familiar with how caches work and how to evaluate
their performance. To achieve these goals, you will first build a cache simulator and validate its
correctness. Then you will use your cache simulator to study many different cache organizations
and management policies as discussed in lecture.

Section 1 will walk you through how to build the cache simulator, and section 2 will specify
the performance evaluation studies you will undertake using your simulator.

1 Cache Simulator

In the first part of this assignment, you will build a cache simulator. The type of simulator you will
build is known as a trace-driven simulator because it takes as input a trace of events, in this case
memory references. The trace, which we will provide for you, was acquired on another machine.
Once acquired, it can be used to drive simulation studies. In this assignment, the memory reference
events specified in the trace(s) we will give you will be used by your simulator to drive the movement
of data into and out of the cache, thus simulating its behavior. While trace-driven simulators are
not as accurate as event-driven simulators (such as the one you built for programming assignment
#1), they are very effective for studying caches.

Your cache simulator will be configurable based on arguments given at the command line, and
must support the following functionality:

Total cache size
Block size
Unified vs. split I- and D-caches
Associativity
Write back vs. write through
Write allocate vs. write no allocate

In addition to implementing the functionality listed above, your simulator must also collect
and report several statistics that will be used to verify the correctness of the simulator, and that
will be used for performance evaluation later in the assignment. In particular, your simulator must
track:

1



Number of instruction references
Number of data references
Number of instruction misses
Number of data misses
Number of words fetched from memory
Number of words copied back to memory

1.1 Files

The first thing you should do is download the program files from
http://www.ece.umd.edu/class/enee446.F2018/prog2. There are five program files in
total, as indicated in the table below which lists the file names and a short description of their
contents. Note, there are also three other files, “spice.trace,” “cc.trace,” and “tex.trace.” We will
explain what to do with these files later.

File Name Description

Makefile Builds the simulator.
main.c Top-level routines for driving the simulator.
main.h Header file for main.c.
cache.c Cache model.
cache.h Header file for cache.c.

The “Makefile” is a UNIX make file. Try typing make in the local directory where you’ve
copied the files. This will build the simulator from the program files that have been provided, and
will produce an executable called “sim.” Of course, the executable doesn’t do very much since the
files we have given you are only a template for the simulator. However, you can use this make
file to build your simulator as you add functionality. Be sure to update the make file if you have
additional source files other than the four program files we’ve given you.

The four program files, main.c, main.h, cache.c, and cache.h, contain a template for the
simulator written in C. These files contain many useful routines that will save you time (since you
don’t have to write them yourself).

main.c contains the top-level driver for the simulator. It has a front-end routine called
parse args() that parses command line arguments to allow configuring the cache model with
all the different parameters specified earlier. To see a list of valid command line arguments, try
typing sim -h (after compiling the template files). Note that your simulator code should interpret
the four size parameters, block size, unified cache size, instruction cache size, and data cache size,
in units of bytes. main.c also contains a top-level “simulator loop,” called play trace(), and a
routine that parses lines from the trace file, called read trace element(). For each trace element
read, play trace() calls the cache model, via the routine perform access(), to simulate a sin-
gle memory reference to the cache. While you are free to modify main.c, you should be able to
complete the assignment without making any modifications to this file.

2



cache.c contains the cache model itself. There are three routines in this file which you
should be able to use without modification. set cache param() is the cache model interface to the
argument parsing routine in main.c. It intercepts all the parameter requests and sets the proper
parameter values which have been declared as static globals in cache.c. delete and insert

are deletion and insertion routines for a doubly linked list data structure, which we will explain
below. dump settings() prints the cache configuration based on the configured parameters, and
print stats() prints the statistics that you will gather. In addition to these five routines, there
are three template functions which you will have to write. init cache() is called once to build
and initialize the cache model data structures. perform access() is called once for each iteration
of the simulator loop to simulate a single memory reference to the cache. And flush() is called at
the very end of the simulation to purge the cache of its contents. Note that the simulation is not
finished until all dirty cache lines (if there are any) are flushed out of the cache, and all statistics
are updated as a result of such flushes.

main.h is self-explanatory. cache.h contains several constants for initializing and changing
the cache configuration, and contains the data structures used to implement the cache model (we
will explain these in the next section). Finally, cache.h also contains a macro for computing the
base-2 logarithm, called LOG2, which should become useful as you build the cache model.

In addition to the five program files, there are also three trace files that you will use to drive
your simulator. Their names are “spice.trace,” “cc.trace,” and “tex.trace.” These files are the result
of tracing the memory reference behavior of the spice circuit simulator, a C compiler, and the TeX
text formatting program, respectively. They represent roughly 1 million memory references each.

The trace files are in ASCII format, so they are in human-readable form. Try typing “more

spice.trace.” Each line in the trace file represents a single memory reference and contains two
numbers: a reference type, which is a number between 0–2, and a memory address. All other text
following these two numbers should be ignored by your simulator. The reference number specifies
what type of memory reference is being performed with the following encoding:

0 Data load reference
1 Data store reference
2 Instruction load reference

The number following the reference type is the byte address of the memory reference itself. This
number is in hexadecimal format, and specifies a 32-bit byte address in the range 0-0xffffffff,
inclusive.

1.2 Building the Cache Model

There are many ways to construct the cache model. You will be graded only on the correctness of
the model, so you are completely free to implement the cache model in any fashion you choose. In
this section, we give some hints for an implementation that uses the data structures given in the
template code.

3



1.2.1 Incremental Approach

The most important hint is a general software engineering rule of thumb: build the simulator by

incrementally adding functionality. The biggest mistake you can make is to try to implement
the cache functions all at once. Instead, build the very simplest cache model possible, and test
it thoroughly before proceeding. Then, add a small piece of functionality, and then test that
thoroughly before proceeding. And so on until you’ve finished the assignment. We recommend the
following incremental approach:

1. Build a unified, fixed block size, direct-mapped cache with a write-back write policy and a
write allocate allocation policy.

2. Add variable block size functionality.

3. Add variable associativity functionality.

4. Add split organization functionality.

5. Add write through write policy functionality.

6. Add write no-allocate allocation policy functionality.

You can test your cache model at each stage by comparing the results you get from your
simulator with the validation numbers which we will provide.

1.2.2 Cache Structures

In cache.h, you will find the data structure cache which implements most of the cache model:

typedef struct cache_ {

int size; /* cache size in words */

int associativity; /* cache associativity */

int n_sets; /* number of cache sets */

unsigned index_mask; /* mask to find cache index */

int index_mask_offset; /* number of zero bits in mask */

Pcache_line *LRU_head; /* head of LRU list for each set */

Pcache_line *LRU_tail; /* tail of LRU list for each set */

int *set_contents; /* number of valid entries in set */

} cache, *Pcache;

The first six fields of this structure are cache configuration constants which you should ini-
tialize in init cache(). Consult the lectures and text to see how these constants are computed.
The remaining three fields, LRU head, LRU tail, and set contents, are the main structures that
implement the cache. Let us first consider how to implement the simplest case, a direct-mapped
cache. In this case, you only need the LRU head field.

Once you have computed the number of sets in the cache, n sets, you should allocate an array
of cache line pointers:

4



my_cache.LRU_head =

(Pcache_line *)malloc(sizeof(Pcache_line)*my_cache.n_sets);

The LRU head array is the data structure that keeps track of all the cache lines in the cache:
each element in this array is a pointer to a cache line that occupies that set, or a NULL pointer if
there is no valid cache line in the set (initially, all elements in the array should be set to NULL).
The cache line itself is kept in the cache line data structure, also declared in cache.h:

typedef struct cache_line_ {

unsigned tag;

int dirty;

struct cache_line_ *LRU_next;

struct cache_line_ *LRU_prev;

} cache_line, *Pcache_line;

This structure is very simple. The “tag” field should be set to the tag portion of the address
cached in the cache line, and the “dirty” field should be set each time the cache line is written.
The “dirty” field should be consulted when a cache line is replaced. If the field is set, the cache
line must be written back to memory. While you won’t be simulating this (since you won’t be
simulating main memory), this will affect your cache statistics. The remaining two fields are not
needed for a direct-mapped cache, and will be discussed later. Notice that in this simulator, you
do not need to keep track of any data. We are only simulating the memory reference patterns–we
do not care about the data associated with those references.

One final hint: if you have computed the index mask and index mask offset fields properly,
then you should be able to compute the index into the cache for an address, addr, in the following
way:

index = (addr & my_cache.index_mask) >> my_cache.index_mask_offset

Then, check the cache line at this index, my cache.LRU head[index]. If the cache line has a
tag that matches the address’ tag, you have a cache hit. Otherwise, you have a cache miss1.

1.2.3 Adding Associativity and LRU Replacement

Once you have built a direct-mapped cache, you can extend it to handle set-associative caches by
allowing multiple cache lines to reside in each set. The cache and cache line data structures we
have provided are designed to handle this by implementing each set as a doubly linked list of cache
line data structures. Therefore, if your simulator needs to add a cache line to a set that already
contains a cache line, simply insert the cache line into the linked list. Your simulator, however,
should never allow the number of cache lines in each linked list to exceed the degree of associativity

1Of course, if the pointer at the index is NULL, you also have a cache miss.

5



configured in the cache. To enforce this, allocate an array of integers to the set contents field in
the cache data structure, one integer per set. Use these integers as counters to count the number
of cache lines in each set, and make sure that none of the counters ever exceeds the associativity
of the cache.

If you need to insert a cache line into a set that is already at full capacity, then it is necessary
to evict one of the cache lines. In the case of a direct-mapped cache, the eviction is easy since there
is at most one cache line in every set. When a cache has higher associativity, it becomes necessary
to choose a cache line for replacement. In this assignment, you will implement an LRU replacement

policy. One way to implement LRU is to keep the linked list in each set sorted by the order in
which the cache lines were referenced. This can be done by removing a cache line from the linked
list each time you reference it, and inserting it back into the linked list at the head. In this case,
you should always evict the cache line at the tail of the list.

To build set-associative caches and to implement the LRU replacement policy described above,
you should use the two routines, delete and insert, provided in the cache.c module. delete

removes an item from a linked list, and insert inserts an item at the head of a linked list. Both
routines assume a doubly linked list (which our data structures provide) and take three parameters:
a head pointer (passed by reference), a tail pointer (passed by reference), and a pointer to the cache
line to be inserted or deleted (passed by value).

One final hint: if you implement a set associative cache whose associativity can be configured,
then you have also implemented a fully associative cache. A fully associative cache is simply an
N -way set-associative cache with 1 set, and in which N is the total number of cache lines in the
cache.

1.3 Validation

In Section 2, you will use your cache simulator to analyze the characteristics and performance of
various cache configurations on the traces that we have provided for you. Before doing this, it is
important to validate the accuracy of your cache simulator.

Compare the output of your cache simulator to the validation statistics provided in Table 1.
The table shows the statistics that were obtained on a working cache simulator given various cache
configurations on the spice workload trace (the file, “spice.trace” in the class directory). The
statistics emitted by your simulator should match identically to the statistics reported in Table 1.
Notice that in Table 1, the values in the columns labeled “CS” and “BS” are given in bytes, while
the values in the columns labeled “DF” and “CB” are given in words.2

2 Performance Evaluation

You should now have a cache simulator that can be configured (for total size, block size, uni-
fied versus split, associativity, write-through versus write-back, and write-allocate versus write-no-

2Remember, we are assuming a 32-bit architecture, so a word contains 4 bytes.

6



Instructions Data Total
CS I- vs D- BS Ass Write Alloc Misses Repl Misses Repl DF CB
8 K Split 16 1 WB WA 24681 24173 8283 7818 131856 12024
16 K Split 16 1 WB WA 11514 10560 5839 5051 69412 8008
32 K Split 16 1 WB WA 5922 4321 1567 520 29956 3628
64 K Split 16 1 WB WA 2619 484 1290 103 15636 3324
8 K Unified 16 1 WB WA 36136 35787 21261 21098 229588 37844
8 K Unified 32 1 WB WA 26673 26502 19561 19476 369872 69104
8 K Unified 64 1 WB WA 23104 23029 20377 20324 695696 136112
32 K Split 128 1 WB WA 1964 1726 459 280 77536 7296
8 K Split 64 2 WB WA 6590 6462 3160 3032 156000 18880
8 K Split 64 4 WB WA 6025 5897 875 747 110400 7296
8 K Split 64 8 WB WA 6435 6307 803 675 115808 6656
8 K Split 64 16 WB WA 6536 6408 799 671 117360 6624
8 K Split 64 128 WB WA 6523 6395 790 662 117008 6576
1 K Split 64 2 WB WA 44962 44946 24767 24751 1115664 149200
1 K Split 64 8 WB WA 45885 45869 22808 22792 1099088 112480
1 K Split 64 16 WB WA 45969 45953 20667 20651 1066176 90416
8 K Split 16 1 WT WA 24681 24173 8283 7818 131856 66538
8 K Split 32 1 WT WA 15868 15612 7504 7264 186976 66538
8 K Split 64 2 WT WA 6590 6462 3160 3032 156000 66538
8 K Split 16 1 WB WNA 24681 24173 14904 6688 127304 14643
8 K Split 32 1 WB WNA 15868 15612 15098 6421 180200 22033
8 K Split 64 2 WB WNA 6590 6462 8638 2726 151104 13624

Table 1: Sample statistics from the spice workload for validation. Column “CS” indicates cache size
in bytes. Column “I- vs D-” indicates a split or unified cache. Column “BS” indicates block size
in bytes. Column “Ass” indicates associativity. Column “Write” indicates the write policy, either
write-back (“WB”) or write-through (“WT”). Column “Alloc” indicates the allocation policy, either
write-allocate (“WA”) or write-no-allocate (“WNA”). The last six columns present the validation
statistics. They are the instruction misses, the instruction replacements, the data misses, the data
replacements, the total demand fetches in words, and the total copies back in words, respectively.

7



allocate). Furthermore, this simulator should be verified against the sample cache statistics that
we have given you. (If you don’t have such a cache simulator, do not attempt this portion of the
assignment until you do). Now you will use your cache simulator to perform studies on the three
sample traces (spice, gcc, and TeX) that we have provided.

2.1 Working Set Characterization

In this performance evaluation exercise, you will characterize the working set size of the three
sample traces given.

Using your cache simulator, plot the hit rate of the cache as a function of cache size. Start with
a cache size of 4 bytes, and increase the size (each time by a factor of 2) until the hit rate remains
insensitive to cache size. Use a split cache organization so that you can separately characterize the
behavior of instruction and data references (i.e., you will have two plots per sample trace–one for
instructions, and one for data). Factor out the effects of conflict misses by *always* using a fully
associative cache. Also, always set the block size to 4 bytes, use a write-back cache, and use the
write-allocate policy.

Answer the following questions:

1. Explain what this experiment is doing, and how it works. Also, explain the significance of
the features in the hit-rate vs. cache size plots.

2. What is the total instruction working set size and data working set size for each of the three
sample traces?

2.2 Impact of Block Size

Set your cache simulator for a split I- D-cache organization, each of size 8 K-bytes. Set the
associativity to 2, use a write-back cache, and use a write-allocate policy. Plot the hit rate of the
cache as a function of block size. Vary the block size between 4 bytes and 4 K-bytes, in powers of
2. Do this for the three traces, and make a separate plot for instruction and data references.

Answer the following questions:

1. Explain why the hit rate vs. block size plot has the shape that it does. In particular, explain
the relevance of spatial locality to the shape of this curve.

2. What is the optimal block size (consider instruction and data references separately) for each
trace?

3. Is the optimal block size for instruction and data references different? What does this tell
you about the nature of instruction references versus data references?

8



2.3 Impact of Associativity

Set your cache simulator for a split I- D-cache organization, each of size 8 K-bytes. Set the block
size to 128 bytes, use a write-back cache, and use a write-allocate policy. Plot the hit rate of the
cache as a function of associativity. Vary the associativity between 1 and 64, in powers of 2. Do
this for the three traces, and make a separate plot for instruction and data references.

Answer the following questions:

1. Explain why the hit rate vs. associativity plot has the shape that it does.

2. Is there a difference between the plots for instruction and data references? What does this
tell you about the difference in impact of associativity on instruction versus data references?

2.4 Memory Bandwidth

Using your cache simulator, compare the total memory traffic generated by a write-through versus
write-back cache. Use a split I- D-cache organization. Simulate a couple of reasonable cache
sizes (such as 8 K-bytes and 16 K-bytes), reasonable block sizes (such as 64 and 128 bytes), and
reasonable associativities (such as 2 and 4). For now, use a write-no-allocate policy. Run 4 or 5
different simulations total.

Answer the following questions:

1. Which cache has the smaller memory traffic, the write-through cache or the write-back cache?
Why?

2. Is there any scenario under which your answer to the question above would flip? Explain.

Now use the same parameters, but fix the policy to write-back. Perform the same experiment,
but this time compare the write-allocate and write-no-allocate policies.

Answer the following questions:

1. Which cache has the smaller memory traffic, the write-allocate or the write-no-allocate cache?
Why?

2. Is there any scenario under which your answer to the question above would flip? Explain.

9


