Basic Computer Organization Topics

I. Instruction Set Architectures
 A. Machine state (visible portion or programmer’s view of the architecture)
 1. Memory organization
 2. Register organization
 3. Data types
 4. Interrupts and events
 B. Register organizations
 1. Accumulators
 2. Index Registers
 3. General Purpose Registers (GPRs)
 4. Load-store machines
 5. Stack machines
 C. Instruction types
 1. Operations (arithmetic, logical operations, etc.)
 2. Data movement (load / store)
 3. Control flow
 D. Data types
 1. Consists of a data representation, and a set of operations on the representation
 2. Ex: integer, floating point (single and double precision), narrow width fixed point, etc.
 E. Addressing Modes
 1. Big vs. little endian
 2. Register
 3. Immediate
 4. Direct
 5. Register indirect
 6. Displacement
 7. Indexed
 F. Instruction Encoding
 1. Fixed instruction formats
 2. Variable-length instructions
 3. Compromise: a small number of instruction lengths
 G. Control
 1. Unconditional jumps
 2. Conditional jumps (branches)
 3. Conditions (condition codes, flags, registers)
 4. Support for procedures
 5. Support for exceptions
 H. RISC vs CISC

III. Pipelining
 A. Implementing an ISA
 1. Computer architecture building blocks
 2. Pipeline implementation of RISC-V
a. Stages (F,R,E,M,W)
b. Pipeline registers
c. Computing pipeline performance

B. Structural hazards

C. Data hazards
1. Types (RAW,WAW,WAR)
2. Pipeline stall
3. Bypass (forwarding)

D. Control hazards
1. Pipeline stall
2. Early branch test and target calculation
3. Static prediction
4. Delayed branch

E. Exceptions
1. Types (synchronous, asynchronous)
2. Restartability
3. Precise semantics
4. Problems with synchronous exceptions
 a. Multiple exceptions
 b. Out-of-order exceptions
5. Single commit point

F. Multi-cycle operations
1. Bandwidth, latency
2. Impact on pipeline
 a. New structural hazards (competing for writeback port)
 b. More forwarding paths
 c. New data hazards that must stall
 d. Complications for precise interrupts