ENEE 447: Operating Systems — Midterm Exam

of deciding which one to run is

2. When an operating system wants to run multiple-applications at once, the act
gle-core processors and

called seheduling.Tell me what you know about it, with regards to both sin

multi-core processors. Mﬁ"
° Genernl scheduting o SM}“ - e
- (ritero) te maximize C(PU utilizotion

) v maximise throwghpar (wveat process finish in
LT , Ti A 4
Pl'fﬂ '< 2) T2 minim;2€ av’?r’dfﬁ’j wnit titae iy K

reloged .
| 4) te minimia m/?- procy’s YeSponty time
})t minimize Avq. process 'S turn arowd timg
afrl‘w“- ﬁ G Pr‘c"s jtarf th.'p-, \1'."’:“'

. :] 't?%fm
P‘*""‘”’f g paeked] @ Jf""-'f response [@;@7 [W .-/
| /

Hrﬂ",”"uQ tfﬂ . /I/I q) _r"'
== tuenoropnd timg i F

. /J .
n'*"f”"]""'me_ yo Lated Ui L <
3) frcfer Prececes with ﬁ;}"wr Pr'-'oﬁ'ti es

3 ja:rnes} (even #’40731 Aaro_ 2o “7""76 _))

— a(doﬂ'tﬁm 2 Bffﬂcu
1) Firse wcome ~Fiese Senr
but may starve [Atec pemving preced -‘f fimt comij Ones

2) Short time f.tnr pree j:‘f:re axecute Shovtese ﬁ,ﬁ,ﬁ: 32
S5 £;

leo(te Get & ﬂj’lt estimate 1 BTy timne o
el AP SN g 7
3) PonpA fobin
Feosible but sometimes [T waMT fﬂ-"{ttc respons 24 gital
ﬂ"ﬂ{ the W@ time sies ,'-f not 1“‘”;" ’d'ﬂjﬂ ‘m}, ! /b:e.r:,
2

G) multi-level pueut ”~
Consise of et uewds where esch represone; o =2
presits ‘may chonge between gueves Prione,
3

Pather fair, but thoe » fever 4 besr Loluti.,
vl (2n haskunsds v pulty~core Loe £45)

e mplti —core ,;Jcedub::j
- peed to 1»«0‘76 Segucnt:&,l +ad/

— e, ‘ |
- Mot A (,000(fa[ana‘ﬁ .fﬂofj and es1imate é“.dr.- Tine aa:urn%
- need te Censley SyndArsniztion ol cadhe capermy

hintex [Jocks ov SemapAo WFrar@c-f

o a,.qo, PQW‘QM %k_, \

jenemﬂ)/ wie Mot

L | meﬂm‘u’? g SM res
~ Some derniced WW‘#

Pwh m.‘jrwnm i K .
| when Jome ceref have too much Loads 4 JE

push tasls to other net—sipusy cory
pult M |

When SOME Cores ore wile or poe S0 busy

AT /m@- Some tadc:' f/ﬁ-« 0%"{_ éu.r/ gores

AT TR A T S e s c—

3rdQuestion.md - Grip http://localhost:6419/

1of2

3rdQuestion.md - Grip

The communication through threads and processes are generally called inter process communication (IPC)

IPC

IPC Implementation by theory

1. Could be implemented via shared memory like mailboxes

2. Could also be done via message queue where a sender push some messages queue resides in the receiver's space

3. Could be implemented via interrupt, so when a message sent, the other thread got interrupted and check it in interrrupt
handler

4. Could be done via polling, aka. receiver checks it periodically

Some features

1. Could be unidirectional or bidirectional
2. A link could be established within more than 2 threads
3. More than one linke could be established between 2 threads

Some unix implementation examples

pipe, file, send/recv (socket)

hardware involved

e need to offer some shared memory and interrrupt mechanism
e may offer some register as pointer of message queue if it has already offered many registers for context switching use (
like Sun Sparc)

Synchronization

It is vital to prevent race condition in multi-thread tasks, i.e. other thread won't affect current thread to generate a different
result.

A famous example could be read & write problems.
To prevent from race condition, we can

e don't share data

o sounds stupid but it works
e disable interrrupts to ensure one thing at a time won't work if multi cores involved
e use test and set mechanism

o need some cache-coherence to help if we want it work as well in multi-core
e use special designed lock like :

DisableInterrupt();
DoStuffAboutCriticalSection();
EnableInterrupt();

Hardware invovling

05/02/2016 10:50 PM

3rdQuestion.md - Grip http://localhost:6419/

e Test-and-set / compare-and-swap mechanism needs hardware offer some places of memory to help.
e Other software mechanism like mutex lock / semaphore needs hardware supports cache-coherence if using in multi-core
environment.

2 0f 2 05/02/2016 10:50 PM

