ENEE 447: Operating Systems — Midterm Exam
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The communication through threads and processes are generally called inter process communication ( IPC )

IPC

IPC Implementation by theory

1. Could be implemented via shared memory like mailboxes

2. Could also be done via message queue where a sender push some messages queue resides in the receiver's space

3. Could be implemented via interrupt, so when a message sent, the other thread got interrupted and check it in interrrupt
handler

4. Could be done via polling, aka. receiver checks it periodically

Some features

1. Could be unidirectional or bidirectional
2. A link could be established within more than 2 threads
3. More than one linke could be established between 2 threads

Some unix implementation examples

pipe, file, send/recv ( socket )

hardware involved

e need to offer some shared memory and interrrupt mechanism
e may offer some register as pointer of message queue if it has already offered many registers for context switching use (
like Sun Sparc )

Synchronization

It is vital to prevent race condition in multi-thread tasks, i.e. other thread won't affect current thread to generate a different
result.

A famous example could be read & write problems.
To prevent from race condition, we can

e don't share data

o sounds stupid but it works
e disable interrrupts to ensure one thing at a time won't work if multi cores involved
e use test and set mechanism

o need some cache-coherence to help if we want it work as well in multi-core
e use special designed lock like :

DisableInterrupt();
DoStuffAboutCriticalSection();
EnableInterrupt();

Hardware invovling
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e Test-and-set / compare-and-swap mechanism needs hardware offer some places of memory to help.
e Other software mechanism like mutex lock / semaphore needs hardware supports cache-coherence if using in multi-core
environment.
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