
Purpose
In this project you will implement trivial multicore load balancing on the Raspberry Pi, using a
combination of the last three projects. In your last three projects you have implemented the following
facilities:

• IRQ and FIQ interrupt handlers

• An IPC mechanism to communicate between “client” and “server” cores

• A context-switch mechanism
In this project, you will combine these mechanisms into one system, in which the “server” core, core0,
will tell the other cores which threads to run. The “client” cores (cores 1, 2, and 3) will periodically
update core0 with their status, at which time they present the following pieces of information:

1. Core status {CORE_ERROR, CORE_RESET, CORE_IDLE, CORE_RUN}
2. If CORE_RUN, the thread ID of the thread currently running
3. A measure of the thread’s performance (for now, a hard-coded value that we will ignore)

Core0 uses this information to determine which cores should be running which threads, in a load-
balancing fashion as described in class.

Multicore Load-Balancing
In general, because the incremental cost of silicon is low, future systems can easily have enough cores to
run numerous threads with minimal thread-switching. In such a scenario, the job of the operating system
becomes one of load balancing more than thread scheduling: i.e., it is most important to determine how
best to divvy up the processing resources, instead of figuring out how to get numerous jobs done quickly.

To this end, we will have the code running on core0 act as a lowest-level kernel, and the code running on
the other cores will be subservient to it. They will periodically let core0 know what they are doing (what

c0 c1 c2

CORE_RUN: threadid, perf numbers

CORE_RUN: (new) threadid

c3

ENEE 447: Operating Systems — Project 5 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 1

Project 5: Distributed Scheduling (4%)
ENEE 447: Operating Systems — Spring 2012
Assigned: Monday, Feb 29; Due: Friday, Mar 11

thread number they are running), and in response, the kernel on core0 will tell them what to do next.
This is illustrated in the figure above. The figure shows how cores 1, 2, and 3 register with core0, with the
CORE_RUN status value, and arguments of threadid and that thread’s most recent performance
numbers. The kernel code on core0 responds with a (potentially new) state as well as a potentially new
threadid.

Implement Distributed Scheduling
Your task is to use the components that you have already developed:

• Implement interrupt handlers for the kernel and the ukernel (for now, what we’re calling the
kernel-like code running on cores 1, 2, 3)

• The kernel’s handler should respond to message by giving a new thread ID (I have provided
a handler that simply toggles the lowest bit of the thread ID between even/odd)

• The ukernel’s handler should look like the client code in your IPC project: when it wakes
up it should save process state, send a message to the kernel, and, when the kernel
responds, it should switch to the ID given by the kernel

• Use your IPC mechanism to communicate between cores

• Use your context-switch code to round-robin back and forth between two “user” codes as
directed by the kernel

You have been given the following code:

add the following to ipc.c

void _init_ipc()
{
 unsigned int i;

 for (i=0; i<NUM_CORES; i++) {
 // clear the mailbox
 }

 #define INT_IRQ 0x0F
 #define INT_FIQ 0xF0
 #define INT_NONE 0

 // mailboxes & interrupts
 PUT32(0x40000050, INT_FIQ); // mbox 0 interrupts by FIQ; note: IRQ used by timer
 PUT32(0x40000054, INT_IRQ); // mboxes 1..3 interrupt via IRQ
 PUT32(0x40000058, INT_IRQ);
 PUT32(0x4000005C, INT_IRQ);

 return;
}

This file simply changes the set-up so that all of the mailboxes interrupt … the kernel will use this to
interrupt cores 1, 2, 3 periodically (later, we will use timer-controlled interrupts, but I figured we would
stick with things you have already seen, because it is already going to be difficult enough).
Next are modifications to the hype.h #include file.

add the following to hype.h:

enum core_status {
 CORE_ERROR=0,
 CORE_RESET,
 CORE_IDLE,
 CORE_RUN,

ENEE 447: Operating Systems — Project 5 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 2

 // add new ones above here
 NUM_CORESTATUS
};

#define SET_REGMSG(status, thread, ipc1000) \
(((status << 24) & 0x0F000000) | ((thread << 16) & 0x00FF0000) | (ipc1000 & 0x0000FFFF))

#define REGMSG_STATUS(msg) ((msg >> 24) & 0xF)
#define REGMSG_THREAD(msg) ((msg >> 16) & 0xFF)
#define REGMSG_IPC1000(msg) (msg & 0xFFFF)

Here, you simply add some message support to the file. These primitives are used to send status messages
back and forth between the ukernels on cores 1, 2, and 3, and the main kernel on core0. The
enumeration lists a number of possible status values that the core can have. The SET_REGMSG macro
packs into a 28-bit field three values:

1. a 4-bit status value
2. an 8-bit threadid number
3. a 16-bit measure of performance (measured in instructions per 1000 cycles)

The REGMSG_ macros extract these fields from a 32-bit integer.
The following is the kernel code. You need do nothing to it, unless you want to try other scheduling
mechanisms. Right now, as written, it simply toggles between odd and even numbers, pseudo-randomly.
The code assumes that, on each core, you are running two different threads with adjacent IDs (even and
odd) such that the odd one is 1 larger than the even one, and not the other way around.
For example, core1 can run threads 0 and 1 but not threads 1 and 2. If core1 runs threads 0 and 1, then
core2 can run threads 2 and 3, but not threads 1 and 2 or threads 3 and 4, etc.

kernel.c

#include "hype.h"

extern unsigned int interrupt_core(unsigned int);

void
kernel()
{
 unsigned int then, now, delta;

 #include "initf.auto"

 then = now_usec();
 while (1) {
 now = now_usec();
 delta = usec_diff(now, then);
 if (delta > ONE_SEC) {
 then = now;
 interrupt_core(1);
 interrupt_core(2);
 }
 }
}

extern unsigned int krecv();

void
incoming_kmsg()
{
 unsigned int msg = krecv();
 int id, thread;
 int swap = now_usec() & 2;

ENEE 447: Operating Systems — Project 5 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 3

 if (MSG_VALID(msg) && (id = MSG_SENDER(msg)) != 0) {
 msg = MSG_DATA(msg);

 if (REGMSG_STATUS(msg) == CORE_RUN) {
 thread = REGMSG_THREAD(msg);
 if (swap) {
 if (thread & 0x1) {
 thread &= 0xfffffffe;
 } else {
 thread |= 0x1;
 }
 }
 msg = SET_REGMSG(CORE_RUN, thread, 0);
 } else {
 msg = SET_REGMSG(CORE_RESET, 0, 0);
 }
 send(id, msg);
 }
}

Here, the time value is used to decide whether or not to change threads.
The u_kernel code is based on what was previously in your z_applications.c file for the IPC project. You
will keep the z_applications.c file from your context-switch code: your thread should be running the
client applications in that file, and the code in u_kernel.c should do two things:

1. when awoken due to an interrupt, send a message to core0

2. upon receipt of an ACK from core0, switch to the indicated thread (or reset, or whatever the
kernel on core0 tells the client core to do)

The code is shown below:

u_kernel.c:

#include "hype.h"

unsigned int
ukernel_status(void)
{
 unsigned int inmsg, outmsg;

 outmsg = SET_REGMSG(CORE_RUN, current_thread, 0xcafe);

 do {
 unsigned int backoff = 1;
 while (!send(0, outmsg)) {
 oldwait(backoff);
 backoff *= 2;
 }
 } while ((inmsg = recv(USER_TIMEOUT)) == NACK);

 //
 // do whatever the kernel says to do:
 //
 // CORE_RESTART -- only in error situations (optional extra credit)
 // CORE_RUN -- specific thread number
 //

}

The response that returns from the kernel may have your code restore the previously saved thread context,
or it may have you change to a different thread, or it may have you reset yourself if it detects an error. The
resetting is optional, for extra credit; only do it if you get everything else working.

ENEE 447: Operating Systems — Project 5 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 4

Note that this should all look very familiar to you — it is simply the first time you have put multiple
pieces together.

A Few Things to Note
There are a few considerations … for instance, each core must have two thread IDs, and none of the
thread IDs can be the same (otherwise, things might get weird).
You can have each core run the same z_application.c code, because all of the state is kept on the stack. If
you use global variables anywhere, you will want to have each core run a different set of functions
specifically written for it.

Build It, Load It, Run It
Once you have it working, show us.

ENEE 447: Operating Systems — Project 5 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 5

