
Purpose
In this project you will figure out how to turn on the ARM’s virtual memory system. Virtual memory
underlies many of computing’s most important facilities, including process protection, shared memory,
multitasking, the kernel’s privileged mode, the familiar virtual-machine programming model, and more.
It is essential to most operating systems, especially general-purpose operating systems. Your
implementation will be very simple but will have all of the essentials, including shared pages (two
different virtual pages mapping to the same physical page), different mapping characteristics for different
pages, etc. Once you get this working, it should become obvious how to extend the facility to a full
system, as we will in a future project.

Virtual Memory and the ARM/Raspberry Pi
Address translation is the mechanism through which the operating system provides virtual address spaces
to user-level applications. The operating system maintains a set of mappings that translate references
within the per-process virtual spaces to the system’s physical space. Addresses are usually mapped at a page
granularity—typically several kilobytes. The mappings are organized in a page table, and for performance
reasons most hardware systems provide a translation lookaside buffer (TLB) that caches those PTEs (page-
table entries; i.e. mappings) that have been needed recently. When a process performs a load or store to a
virtual address, the hardware translates this to a physical address using the mapping information in the
TLB. If the mapping is not found in the TLB, it must be retrieved from the page table and loaded into
the TLB before processing can continue. The ARM has a TLB, and its hardware can automatically walk
the page tables and load the TLB with the required information, when it find it in the page table.
The table looks like this:

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B3-1325
ID051414 Non-Confidential

Figure B3-3 gives a general view of address translation when using the Short-descriptor translation table format.

Figure B3-3 General view of address translation using Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables on page B3-1328 describes why, when using
the Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in
Figure B3-3.

Short-descriptor translation table format descriptors, Memory attributes in the Short-descriptor translation table
format descriptors on page B3-1328, and Control of Secure or Non-secure memory access, Short-descriptor format
on page B3-1330 describe the format of the descriptors in the Short-descriptor format translation tables.

The following sections then describe the use of this translation table format:
• Selecting between TTBR0 and TTBR1, Short-descriptor translation table format on page B3-1330
• Translation table walks, when using the Short-descriptor translation table format on page B3-1331.

B3.5.1 Short-descriptor translation table format descriptors

The following sections describe the formats of the entries in the Short-descriptor translation tables:
• Short-descriptor translation table first-level descriptor formats on page B3-1326
• Short-descriptor translation table second-level descriptor formats on page B3-1327.

For more information about second-level translation tables see Additional requirements for Short-descriptor format
translation tables on page B3-1328.

Note
 Previous versions of the ARM Architecture Reference Manual, and some other documentation, describes the AP[2]
bit in the translation table entries as the APX bit.

Information returned by a translation table lookup on page B3-1320 describes the classification of the non-address
fields in the descriptors as address map control, access control, or attribute fields.

TTBR0 or TTBR1
First-level table

Indexed by
VA[19:12]

Section
1MB
memory
region

Page table

Supersection
16MB
memory
region

Second-level table

Indexed by
VA[31-N:20]‡

Large page
64KB
memory
page

Small page
4KB
memory
page

‡ When using TTBR1, N is 0. When using TTBR0, 0 ≤ N < 8.
† Repeated entries required because of descriptor field overlaps.

Supersection

Repeated
16 times†

Repeated
16 times†

Large page

See text for more information.

Note that there is one page in the first-level table and potentially thousands of pages making up the
second-level table. However, if the PTE indicates that it maps a large area, like a 1MB “section” or a
16MB “supersection,” then there need be no second-level table at all. The PTE format looks like this:

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 1

Project 6: Virtual Memory I (4%)
ENEE 447: Operating Systems — Spring 2016
Assigned: Monday, Mar 21; Due: Friday, Apr 1

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

B3-1326 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

Short-descriptor translation table first-level descriptor formats

Each entry in the first-level table describes the mapping of the associated 1MB MVA range.

Figure B3-4 shows the possible first-level descriptor formats.

Figure B3-4 Short-descriptor first-level descriptor formats

Inclusion of the PXN attribute in the Short-descriptor translation table formats is:
• OPTIONAL in an implementation that does not include the Large Physical Address Extension
• required in an implementation includes the Large Physical Address Extension.

Descriptor bits[1:0] identify the descriptor type. On an implementation that supports the PXN attribute, for the
Section and Supersection entries, bit[0] also defines the PXN value. The encoding of these bits is:

0b00, Invalid

The associated VA is unmapped, and any attempt to access it generates a Translation fault.

Software can use bits[31:2] of the descriptor for its own purposes, because the hardware ignores
these bits.

0b01, Page table

The descriptor gives the address of a second-level translation table, that specifies the mapping of the
associated 1MByte VA range.

0 0

31 2 1 0

IGNOREDInvalid

Page table Domain 0 1

31 10 9 8 5 4 3 2 1 0

Page table base address, bits[31:10]

SBZ
NS

PXN†

0 S Domain C B 1

31 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Section base address, PA[31:20]Section

NS nG
AP[2]

TEX[2:0]
AP[1:0]

XN

1 S C B 1

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Supersection base address, PA[31:24]

Supersection

Extended base address, PA[35:32]
NS nG

AP[2]

IMPLEMENTATION DEFINED

XN

1 1

31 2 1 0

Reserved, UNK/SBZP
Reserved, when Large

Physical Address Extension
not implemented

Extended base address, PA[39:36]

TEX[2:0]

AP[1:0]

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

PXN‡

PXN‡

† If the implementation does not support the PXN attribute this bit is SBZ.
‡ If the implementation does not support the PXN attribute these bits must be 0.

An implementation that includes the Large Physical
Address Extension must support the PXN attribute.

Putting 0b10 in the bottom two bits indicates that the PTE is for a 1MB section.

Your First-Ever VM Implementation
We will implement the simplest of facilities: a single level page table (just an array, really) of page-table
entries (PTEs) indexed by the virtual page number. Our page sizes will be the 1MB sections, so the page
table need only hold 4K entries to map the entire 4GB space. Using large pages allows the table to be
relatively small: 16KB per page table.
The code on core1 is the test subject: this is the code that will experience virtual memory. It runs a loop
in SYS mode that just flashes the LEDs, but it flashes the red LED using GPIO addresses and flashes the
green LED using addresses in “virtual page 2” … so, at least when you first get your code and start
experimenting with it, the green LED will not flash. This is because the “user-level” code (not really user-
level because it runs in SYS mode) calls two different functions:

• flash_led, which uses the following addresses:
• #define GPFSEL3 0x3F20000C
• #define GPFSEL4 0x3F200010
• #define GPSET1 0x3F200020
• #define GPCLR1 0x3F20002C

• flash_led_diffio, which uses different I/O addresses:

• #define V_GPFSEL3 0x0020000C
• #define V_GPFSEL4 0x00200010
• #define V_GPSET1 0x00200020
• #define V_GPCLR1 0x0020002C

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 2

Note that, if a page size is 1MB, then the bottom 20 bits are page-offset bits, and the topmost 12 bits
create the virtual page number. Thus an address looks like the following in hex:

0xVVVOOOOO
Where the “V” bits make up the virtual page number, and the “O” bits make up the page offset.
In the Raspberry Pi 2, the GPIO registers (including the ones corresponding to the LEDs) are memory-
mapped to the 0x3F2xxxxx addresses, so when the flash_led_diffio() function uses the V_GPx addresses
which are in the 0x002xxxxx range, no GPIOs are affected, and thus the LED does nothing. The
function blindly sends out data values into a garbage area of memory.
The code on core0 tells core1 when to initiate virtual memory, by interrupting core1 after a few seconds.
Five seconds after system start-up, core0 interrupts core1, and in the IRQ interrupt handler, core1 calls
the function enable_vm(), which turns everything on. This will be transparent to the blinking code
running on core1 — it should transitions from one moment, during which only the red LED is blinking,
to the next moment, where either the green LED is blinking, or both red and green LEDs are blinking,
depending on how you choose to map the IO addresses.
The kernel code on core0 at the outset initializes the user page tables to 0s … in other words, all PTEs are
invalid at startup. Thus, the enable_vm() routine needs only to set a handful of PTEs and then turn the
correct switches to get the TLB operational. There are only four distinct pages being used by your code at
the moment the enable_vm() function is called:

• 0x3F2xxxxx — GPIO addresses

• 0x002xxxxx — V_GPIO addresses (virtual addresses that, until the virtual memory system is
enabled, point out into the wilderness and do nothing)

• 0x400xxxxx — timer/clock device-register addresses

• 0x000xxxxx — where nearly all your code and data lies
You will want to create a mapping for each, as follows:

• 0x3F2xxxxx → both 0x3F2xxxxx and somewhere else, for example 0x002xxxxx
(First have the GPIO addresses map to themselves, but also point them to 0x002xxxxx, for
symmetry’s sake: the first five seconds only the red LED blinks, and then only the green one will)

• 0x002xxxxx → 0x3F2xxxxx

• 0x400xxxxx → 0x400xxxxx

• 0x000xxxxx → 0x000xxxxx
Note that we are cheating a bit here, because what we are doing is running an application in bare-metal
mode, in which it is executing out of physical memory using physical addresses, and we are using virtual
memory to translate just one select range of virtual addresses, in a sort of contrived way. Don’t worry, we
will get to the real thing by the end of the semester.

ARM Documentation
You will find the ARM Architecture Reference Manual to be invaluable. I will point out some of the most
important pages, but you need to explore this document yourself, because the information that you need
is spread out all over the document. This is one of those (perhaps many) instances in which you curse
ARM, because they really are a misnomer: ARM stands for Acorn RISC Machines, and RISC means
Reduced Instruction-Set Computer … any computer architecture that requires tens of thousands of pages
of documentation cannot, in any way, shape, or form, be considered “reduced” …

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 3

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

B3-1326 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

Short-descriptor translation table first-level descriptor formats

Each entry in the first-level table describes the mapping of the associated 1MB MVA range.

Figure B3-4 shows the possible first-level descriptor formats.

Figure B3-4 Short-descriptor first-level descriptor formats

Inclusion of the PXN attribute in the Short-descriptor translation table formats is:
• OPTIONAL in an implementation that does not include the Large Physical Address Extension
• required in an implementation includes the Large Physical Address Extension.

Descriptor bits[1:0] identify the descriptor type. On an implementation that supports the PXN attribute, for the
Section and Supersection entries, bit[0] also defines the PXN value. The encoding of these bits is:

0b00, Invalid

The associated VA is unmapped, and any attempt to access it generates a Translation fault.

Software can use bits[31:2] of the descriptor for its own purposes, because the hardware ignores
these bits.

0b01, Page table

The descriptor gives the address of a second-level translation table, that specifies the mapping of the
associated 1MByte VA range.

0 0

31 2 1 0

IGNOREDInvalid

Page table Domain 0 1

31 10 9 8 5 4 3 2 1 0

Page table base address, bits[31:10]

SBZ
NS

PXN†

0 S Domain C B 1

31 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Section base address, PA[31:20]Section

NS nG
AP[2]

TEX[2:0]
AP[1:0]

XN

1 S C B 1

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Supersection base address, PA[31:24]

Supersection

Extended base address, PA[35:32]
NS nG

AP[2]

IMPLEMENTATION DEFINED

XN

1 1

31 2 1 0

Reserved, UNK/SBZP
Reserved, when Large

Physical Address Extension
not implemented

Extended base address, PA[39:36]

TEX[2:0]

AP[1:0]

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

PXN‡

PXN‡

† If the implementation does not support the PXN attribute this bit is SBZ.
‡ If the implementation does not support the PXN attribute these bits must be 0.

An implementation that includes the Large Physical
Address Extension must support the PXN attribute.

This is a picture of wha the format of the PTE is … each of the bits has meaning, and the following
handful of pages in the Architectural Reference Manual go into detail (and some are described much later
in the document). Pay close attention to the bits involved in how the memory behaves (e.g., caching),
because some of the settings are specifically for I/O addresses.
Note: in this project we are re-routing I/O addresses through the TLB. I suspect this is unusual, except
for hypervisor/guest-operating-system configurations, because the OS often runs in physical mode and is
the only one allowed to touch the devices. We will have a split-personality OS by the end of class.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 4

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B4-1725
ID051414 Non-Confidential

TTBCR format when using the Short-descriptor translation table format

In an implementation that includes the Security Extensions and is using the Short-descriptor translation table format,
the TTBCR bit assignments are:

In an implementation that does not include the Security Extensions, and is using the Short-descriptor translation
table format, the TTBCR bit assignments are:

EAE, bit[31], if implementation includes the Large Physical Address Extension

Extended Address Enable. The meanings of the possible values of this bit are:

0 Use the 32-bit translation system, with the Short-descriptor translation table format. In
this case, the format of the TTBCR is as described in this section.

1 Use the 40-bit translation system, with the Long-descriptor translation table format. In
this case, the format of the TTBCR is as described in TTBCR format when using the
Long-descriptor translation table format on page B4-1726.

This bit resets to 0, in both the Secure and the Non-secure copies of the TTBCR.

Bit[31], if implementation does not include the Large Physical Address Extension

Reserved, UNK/SBZP.

Bits[30:6, 3] Reserved, UNK/SBZP.

PD1, bit[5], in an implementation that includes the Security Extensions

Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1. The encoding
of this bit is:

0 Perform translation table walks using TTBR1.

1 A TLB miss on an address that is translated using TTBR1 generates a Translation fault.
No translation table walk is performed.

PD0, bit[4], in an implementation that includes the Security Extensions

Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss for an address that is translated using TTBR0. The meanings
of the possible values of this bit are equivalent to those for the PD1 bit.

Bits[5:4], in an implementation that does not include the Security Extensions

Reserved, UNK/SBZP.

Reserved, UNK/SBZP

31 3 2 0

N

456

(0)

PD1
PD0

30

EAE†

† Reserved, UNK/SBZP, if the implementation does not include the Large Physical Address Extension.

Reserved, UNK/SBZP

31 3 2 0

N

31

EAE†

† Reserved, UNK/SBZP, if the implementation does not include the Large Physical Address Extension.

This is the TTBCR, the register that determines how big the page size is via the N bits.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 5

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B4-1729
ID051414 Non-Confidential

B4.1.154 TTBR0, Translation Table Base Register 0, VMSA

The TTBR0 characteristics are:

Purpose TTBR0 holds the base address of translation table 0, and information about the memory it
occupies. This is one of the translation tables for the stage 1 translation of memory accesses
from modes other than Hyp mode.

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability
and shareability information is held in the TTBCR, not in TTBR0.

Configurations The Multiprocessing Extensions change the TTBR0 32-bit register format.

The Large Physical Address Extension extends TTBR0 to a 64-bit register. In an
implementation that includes the Large Physical Address Extension, TTBCR.EAE
determines which TTBR0 format is used:
EAE==0 32-bit format is used. TTBR0[63:32] are ignored.
EAE==1 64-bit format is used.

If the implementation includes the Security Extensions, this register:

• is Banked

• has write access to the Secure copy of the register disabled when the
CP15SDISABLE signal is asserted HIGH.

Attributes A 32-bit or 64-bit RW register with a reset value that depends on the register
implementation. For more information see the register bit descriptions. See also Reset
behavior of CP14 and CP15 registers on page B3-1450.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

The following subsections describe the TTBR0 formats:
• 32-bit TTBR0 format
• 64-bit TTBR0 and TTBR1 format on page B4-1731.

See TTBCR, Translation Table Base Control Register, VMSA on page B4-1724 for more information about using
this register.

Note
 See TTBCR, Translation Table Base Control Register, VMSA on page B4-1724 for a summary of the registers that
define the translation tables for other address translations.

32-bit TTBR0 format

In an implementation that does not include the Multiprocessing Extensions, the 32-bit TTBR0 bit assignments are:

C

31 x
x-1

6 5 4 3 2 1 0

Translation table base 0 address Reserved, UNK/SBZP RGN S

NOS IMP

This is the TTBR0 register; there is also a TTBR1 register. These contain the address of the page table for
the currently executing process. When you context switch to another running process (which has a
different address space, as opposed to switching to another thread, which doesn’t), you need to give the
hardware the pointer to the new process’s address space.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 6

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B3-1325
ID051414 Non-Confidential

Figure B3-3 gives a general view of address translation when using the Short-descriptor translation table format.

Figure B3-3 General view of address translation using Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables on page B3-1328 describes why, when using
the Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in
Figure B3-3.

Short-descriptor translation table format descriptors, Memory attributes in the Short-descriptor translation table
format descriptors on page B3-1328, and Control of Secure or Non-secure memory access, Short-descriptor format
on page B3-1330 describe the format of the descriptors in the Short-descriptor format translation tables.

The following sections then describe the use of this translation table format:
• Selecting between TTBR0 and TTBR1, Short-descriptor translation table format on page B3-1330
• Translation table walks, when using the Short-descriptor translation table format on page B3-1331.

B3.5.1 Short-descriptor translation table format descriptors

The following sections describe the formats of the entries in the Short-descriptor translation tables:
• Short-descriptor translation table first-level descriptor formats on page B3-1326
• Short-descriptor translation table second-level descriptor formats on page B3-1327.

For more information about second-level translation tables see Additional requirements for Short-descriptor format
translation tables on page B3-1328.

Note
 Previous versions of the ARM Architecture Reference Manual, and some other documentation, describes the AP[2]
bit in the translation table entries as the APX bit.

Information returned by a translation table lookup on page B3-1320 describes the classification of the non-address
fields in the descriptors as address map control, access control, or attribute fields.

TTBR0 or TTBR1
First-level table

Indexed by
VA[19:12]

Section
1MB
memory
region

Page table

Supersection
16MB
memory
region

Second-level table

Indexed by
VA[31-N:20]‡

Large page
64KB
memory
page

Small page
4KB
memory
page

‡ When using TTBR1, N is 0. When using TTBR0, 0 ≤ N < 8.
† Repeated entries required because of descriptor field overlaps.

Supersection

Repeated
16 times†

Repeated
16 times†

Large page

See text for more information.

This is the page-table organization. The first level entries point to second-level entries, which point to the
actual page data. When the first-level entries identify themselves as “sections” they instead point directly
to page data.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 7

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B3-1331
ID051414 Non-Confidential

Figure B3-6 How TTBCR.N controls the boundary between the TTBRs, Short-descriptor format

In the selected TTBR. the following bits define the memory region attributes for the translation table walk:
• the RGN, S and C bits, in an implementation that does not include the Multiprocessing Extensions
• the RGN, S, and IRGN[1:0] bits, in an implementation that includes the Multiprocessing Extensions.

For more information, see TTBCR, Translation Table Base Control Register, VMSA on page B4-1724, TTBR0,
Translation Table Base Register 0, VMSA on page B4-1729 and TTBR1, Translation Table Base Register 1, VMSA
on page B4-1733.

Translation table walks, when using the Short-descriptor translation table format describes the translation.

B3.5.5 Translation table walks, when using the Short-descriptor translation table format

When using the Short-descriptor translation table format, and a memory access requires a translation table walk:
• a section-mapped access only requires a read of the first-level translation table
• a page-mapped access also requires a read of the second-level translation table.

Reading a first-level translation table describes how either TTBR1 or TTBR0 is used, with the accessed VA, to
determine the address of the first-level descriptor.

Reading a first-level translation table shows the output address as A[39:0]:

• On an implementation that includes the Virtualization Extensions, for a Non-secure PL1&0 stage 1
translation, this is the IPA of the required descriptor. A Non-secure PL1&0 stage 2 translation of this address
is performed to obtain the PA of the descriptor.

• Otherwise, this address is the PA of the required descriptor.

The full translation flow for Sections, Supersections, Small pages and Large pages on page B3-1332 then shows the
complete translation flow for each valid memory access.

Reading a first-level translation table

When performing a fetch based on TTBR0:
• the address bits taken from TTBR0 vary between bits[31:14] and bits[31:7]
• the address bits taken from the VA, that is the input address for the translation, vary between bits[31:20] and

bits[24:20].

The width of the TTBR0 and VA fields depend on the value of TTBCR.N, as Figure B3-7 on page B3-1332 shows.

0x00000000

0xFFFFFFFF

0x02000000

TTBR0 region

Boundary, when
TTBCR.N==0b111

Effect of decreasing N

TTBR1 region

TTBR0 region

TTBCR.N==0b000
Use of TTBR1 disabled

This indicates how the system behaves wrt multiple multiple simultaneous mappings (e.g. split between
two different guest operating systems). One is mapped through the TTBR0 page table, and the other is
mapped through the TTBR1 page table, and the amount of memory assigned to each is variable.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 8

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

B3-1330 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

B3.5.3 Control of Secure or Non-secure memory access, Short-descriptor format

Access to the Secure or Non-secure physical address map on page B3-1321 describes how the NS bit in the
translation table entries:
• for accesses from Secure state, determines whether the access is to Secure or Non-secure memory
• is ignored by accesses from Non-secure state.

In the Short-descriptor translation table format, the NS bit is defined only in the first-level translation tables. This
means that, in a first-level Page table descriptor, the NS bit defines the physical address space, Secure or
Non-secure, for all of the Large pages and Small pages of memory described by that table.

The NS bit of a first-level Page table descriptor has no effect on the physical address space in which that translation
table is held. As stated in Secure and Non-secure address spaces on page B3-1323, the physical address of that
translation table is in:
• the Secure address space if the translation table walk is in Secure state
• the Non-secure address space if the translation table walk is in Non-secure state.

This means the granularity of the Secure and Non-secure memory spaces is 1MB. However, in these memory
spaces, table entries can define physical memory regions with a granularity of 4KB.

B3.5.4 Selecting between TTBR0 and TTBR1, Short-descriptor translation table format

As described in Determining the translation table base address on page B3-1320, two sets of translation tables can
be defined for each of the PL1&0 stage 1 translations, and TTBR0 and TTBR1 hold the base addresses for the two
sets of tables. When using the Short-descriptor translation table format, the value of TTBCR.N indicates the number
of most significant bits of the input VA that determine whether TTBR0 or TTBR1 holds the required translation
table base address, as follows:
• If N == 0 then use TTBR0. Setting TTBCR.N to zero disables use of a second set of translation tables.
• if N > 0 then:

— if bits[31:32-N] of the input VA are all zero then use TTBR0
— otherwise use TTBR1.

Table B3-1 shows how the value of N determines the lowest address translated using TTBR1, and the size of the
first-level translation table addressed by TTBR0.

Whenever TTBCR.N is nonzero, the size of the translation table addressed by TTBR1 is 16KB.

Figure B3-6 on page B3-1331 shows how the value of TTBCR.N controls the boundary between VAs that are
translated using TTBR0, and VAs that are translated using TTBR1.

Table B3-1 Effect of TTBCR.N on address translation, Short-descriptor format

TTBCR.N First address translated with TTBR1
TTBR0 table

Size Index range

0b000 TTBR1 not used 16KB VA[31:20]

0b001 0x80000000 8KB VA[30:20]

0b010 0x40000000 4KB VA[29:20]

0b011 0x20000000 2KB VA[28:20]

0b100 0x10000000 1KB VA[27:20]

0b101 0x08000000 512 bytes VA[26:20]

0b110 0x04000000 256 bytes VA[25:20]

0b111 0x02000000 128 bytes VA[24:20]

These are the values that indicate how much space goes to the TTBR0 address space, and how much goes
to the TTBR1 address space.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 9

B3 Virtual Memory System Architecture (VMSA)
B3.15 About the system control registers for VMSA

B3-1452 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

Banked system control registers

In an implementation that includes the Security Extensions, some system control registers are Banked. Banked
system control registers have two copies, one Secure and one Non-secure. The SCR.NS bit selects the Secure or
Non-secure copy of the register. Table B3-33 shows which CP15 registers are Banked in this way, and the permitted
access to each register. No CP14 registers are Banked.

Table B3-33 Banked CP15 registers

CRna Banked register Permitted accessesb

c0 CSSELR, Cache Size Selection Register Read/write only at PL1 or higher

c1 SCTLR, System Control Registerc Read/write only at PL1 or higher

ACTLR, Auxiliary Control Registerd Read/write only at PL1 or higher

c2 TTBR0, Translation Table Base 0 Read/write only at PL1 or higher

TTBR1, Translation Table Base 1 Read/write only at PL1 or higher

TTBCR, Translation Table Base Control Read/write only at PL1 or higher

c3 DACR, Domain Access Control Register Read/write only at PL1 or higher

c5 DFSR, Data Fault Status Register Read/write only at PL1 or higher

IFSR, Instruction Fault Status Register Read/write only at PL1 or higher

ADFSR, Auxiliary Data Fault Status Registerd Read/write only at PL1 or higher

AIFSR, Auxiliary Instruction Fault Status Registerd Read/write only at PL1 or higher

c6 DFAR, Data Fault Address Register Read/write only at PL1 or higher

IFAR, Instruction Fault Address Register Read/write only at PL1 or higher

c7 PAR, Physical Address Register Read/write only at PL1 or higher

c10 PRRR, Primary Region Remap Register Read/write only at PL1 or higher

NMRR, Normal Memory Remap Register Read/write only at PL1 or higher

c12 VBAR, Vector Base Address Register Read/write only at PL1 or higher

c13 FCSEIDR, FCSE PID Registere Read/write only at PL1 or higher

CONTEXTIDR, Context ID Register Read/write only at PL1 or higher

TPIDRURW, User Read/Write Thread ID Read/write at all privilege levels, including PL0

TPIDRURO, User Read-only Thread ID Read-only at PL0
Read/write at PL1 or higher

TPIDRPRW, PL1 only Thread ID Read/write only at PL1 or higher

a. For accesses to 32-bit registers. More correctly, this is the primary coprocessor register.
b. Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
c. Some bits are common to the Secure and the Non-secure copies of the register, see SCTLR, System Control Register,

VMSA on page B4-1707.
d. See ADFSR and AIFSR, Auxiliary Data and Instruction Fault Status Registers, VMSA on page B4-1523. Register is

IMPLEMENTATION DEFINED.
e. Banked only in an implementation that includes the FCSE. The FCSE PID Register is RAZ/WI if the FCSE is not

implemented.

This is a (partial) list of the various control registers that you have to deal with. Nice to have it in one
place.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 10

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B4-1707
ID051414 Non-Confidential

B4.1.130 SCTLR, System Control Register, VMSA

The SCTLR characteristics are:

Purpose The SCTLR provides the top level control of the system, including its memory system.

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Control bits in the SCTLR that are not applicable to a VMSA implementation read as the
value that most closely reflects that implementation, and ignore writes.

In ARMv7, some bits in the register are read-only. These bits relate to non-configurable
features of an ARMv7 implementation, and are provided for compatibility with previous
versions of the architecture.

Configurations In an implementation that includes the Security Extensions, the SCTLR:

• is Banked, with some bits common to the Secure and Non-secure copies of the
register

• has write access to the Secure copy of the register disabled when the
CP15SDISABLE signal is asserted HIGH.

For more information, see Classification of system control registers on page B3-1451.

Attributes A 32-bit RW register with an IMPLEMENTATION DEFINED reset value, see Reset value of the
SCTLR on page B4-1713. See also Reset behavior of CP14 and CP15 registers on
page B3-1450.

Note
 In an implementation that includes the Virtualization Extensions, some reset requirements

apply to the Non-secure copy of SCTLR.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

In a VMSAv7 implementation, the SCTLR bit assignments are:

Bit[31] Reserved, UNK/SBZP.

TE, bit[30] Thumb Exception enable. This bit controls whether exceptions are taken in ARM or Thumb state.
The possible values of this bit are:
0 Exceptions, including reset, taken in ARM state.
1 Exceptions, including reset, taken in Thumb state.

In an implementation that includes the Security Extensions, this bit is Banked between the Secure
and Non-secure copies of the register.

An implementation can include a configuration input signal that determines the reset value of the
TE bit. If there is no configuration input signal to determine the reset value of this bit then it resets
to 0 in an ARMv7-A implementation.

For more information about the use of this bit, see Instruction set state on exception entry on
page B1-1182.

0 1 1 1 1 0 V I Z 0 0 0 1 1 1 C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0)

NMFI
TE

AFE
TRE EE

VE
U FI HA RR SW B

UWXN†
WXN†

† Reserved before the introduction of the Virtualization Extensions, see text for more information.

CP15BEN

This is the System Control Register, which has the all-important M bit in it, which turns on/off the
MMU (i.e., virtual memory).

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 11

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

B4-1548 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

B4.1.36 CONTEXTIDR, Context ID Register, VMSA

The CONTEXTIDR characteristics are:

Purpose CONTEXTIDR identifies the current Process Identifier (PROCID) and, when using the
Short-descriptor translation table format, the Address Space Identifier (ASID).

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Configurations The register format depends on whether address translation is using the Long-descriptor or
the Short-descriptor translation table format.

In an implementation that includes the Security Extensions, this register is Banked.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Reset behavior of CP14 and
CP15 registers on page B3-1450.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

In a VMSA implementation, the CONTEXTIDR bit assignments are:

PROCID, bits[31:0], when using the Long-descriptor translation table format

PROCID, bits[31:8], when using the Short-descriptor translation table format

Process Identifier. This field must be programmed with a unique value that identifies the current
process. See also Using the CONTEXTIDR.

ASID, bits[7:0], when using the Short-descriptor translation table format

Address Space Identifier. This field is programmed with the value of the current ASID.

Note
 When using the Long-descriptor translation table format, either TTBR0 or TTBR1 holds the current

ASID.

Using the CONTEXTIDR

The value of the whole of this register is called the Context ID and is used by:

• the debug logic, for Linked and Unlinked Context ID matching, see Breakpoint debug events on
page C3-2041 and Watchpoint debug events on page C3-2059

• the trace logic, to identify the current process.

The ASID field value is an identifier for a particular process. In the translation tables it identifies entries associated
with a process, and distinguishes them from global entries. This means many cache and TLB maintenance
operations take an ASID argument.

For information about the synchronization of changes to the CONTEXTIDR see Synchronization of changes to
system control registers on page B3-1461. There are particular synchronization requirements when changing the
ASID and Translation Table Base Registers, see Synchronization of changes of ASID and TTBR on page B3-1386.

PROCID
31 8 7 0

PROCID

ASIDShort-descriptor†

† Current translation table format

Long-descriptor†

When threads from multiple address spaces run, the hardware needs to be able to distinguish them. This
is the register that does so. It tells the hardware “any PTE you load while running, attach this ASID to it
when you put it into the TLB.” That way, when that process is swapped out and then is swapped back in
later, it can still use its old mappings if they are still in the TLB.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 12

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

B4-1558 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

B4.1.43 DACR, Domain Access Control Register, VMSA

The DACR characteristics are:

Purpose DACR defines the access permission for each of the sixteen memory domains.

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Configurations If the implementation includes the Security Extensions, this register:

• is Banked

• has write access to the Secure copy of the register disabled when the
CP15SDISABLE signal is asserted HIGH.

In an implementation that includes the Large Physical Address Extension, this register has
no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation table
format.

Attributes A 32-bit RW register with an UNKNOWN reset value. For more information see Reset
behavior of CP14 and CP15 registers on page B3-1450.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

The DACR bit assignments are:

Dn, bits[(2n+1):2n]

Domain n access permission, where n = 0 to 15. Permitted values are:

0b00 No access. Any access to the domain generates a Domain fault.

0b01 Client. Accesses are checked against the permission bits in the translation tables.

0b10 Reserved, effect is UNPREDICTABLE.

0b11 Manager. Accesses are not checked against the permission bits in the translation tables.

For more information, see Domains, Short-descriptor format only on page B3-1362.

Accessing the DACR

To access the DACR, software reads or writes the CP15 registers with <opc1> set to 0, <CRn> set to c3, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15, 0, <Rt>, c3, c0, 0 ; Read DACR into Rt
MCR p15, 0, <Rt>, c3, c0, 0 ; Write Rt to DACR

D0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1

This register is used to set up domains. I am not sure that we need to use them. My implementation does
not.

Build It, Load It, Run It
Once you have it working, show us.

ENEE 447: Operating Systems — Project 6 (4%)

© Copyright 2016 Bruce Jacob, All Rights Reserved	 13

