
Software & Systems Design Software & Systems Design 

ARMv8
Technology Preview

By Richard Grisenthwaite
Lead Architect and Fellow. ARM



What is ARMv8?

 Next version of the ARM architecture
 First release covers the Applications profile only

 Addition of a 64-bit operating capability alongside 32-bit execution
 AArch64 state alongside AArch32 state
 Focus on power efficient architecture advantages in both states

 Definition of relationship between AArch32 state and AArch64 state 

 Enhancement to the AArch32 functionality
 Relatively small scale additions reflecting demand
 Maintaining full compatibility with ARMv7 



ARMv8-A – Context

ARMv8
• A-profile only

(at this time)
• 64-bit architecture 

support



AArch64 - Motivation

 Work on 64-bit architecture started in 2007

 Fundamental motivation is evolution into 64-bit
 Ability to access a large virtual address space
 Foresee a future need in ARM’s traditional markets
 Enables expansion of ARM market presence 

 Developing ecosystem takes time
 Development started ahead of strong demand 
 ARM now seeing strong partner interest in 64-bit

 Though still some years from “must have” status



AArch64 State Fundamentals

 New instruction set (A64)

 Revised exception handling for exceptions in AArch64 state
 Fewer banked registers and modes

 Support for all the same architectural capabilities as in ARMv7
 TrustZone
 Virtualization

 Memory translation system based on the ARMv7
LPAE table format
 LPAE format was designed to be easily extendable to AArch64-bit 

 Up to 48 bits of virtual address from a translation table base register



A64 New Instruction Set - 1 

 New fixed length Instruction set
 Instructions are 32-bits in size
 Clean decode table based on a 5-bit register specifiers

 Instruction semantics broadly the same as in AArch32
 Changes only where there is a compelling reason to do so

 31 general purpose registers accessible at all times
 Improved performance and energy
 General purpose registers are 64-bits wide
 No banking of general purpose registers
 Stack pointer is not a general purpose register 
 PC is not a general purpose register 
 Additional dedicated zero register available for most 

instructions



A64 – Key differences from A32 

 New instructions to support 64-bit operands
 Most instructions can have 32-bit or 64-bit arguments
 Addresses assumed to be 64-bits in size

 LP64 and LLP64 are the primary data models targeted

 Far fewer conditional instructions than in AArch32
 Conditional {branches, compares, selects} 

 No arbitrary length load/store multiple instructions 
 LD/ST ‘P’ for handling pairs of registers added



A64 Advanced SIMD and 
FP  Instruction Set

 A64 Advanced SIMD and FP semantically similar to A32
 Advanced SIMD shares the floating-point register file as in AArch32

 A64 provides 3 major functional enhancements:
 More 128 bit registers: 32 x 128 bit wide registers

 Can be viewed as 64-bit wide registers
 Advanced SIMD supports DP floating-point execution
 Advanced SIMD support full IEEE 754 execution

 Rounding-modes, Denorms, NaN handling

 Register packing model in A64 is different from A32
 64-bit register view fit in bottom of the 128-bit registers

 Some Additional floating-point instructions for IEEE754-2008
 MaxNum/MinNum instructions, Float to Integer conversions with RoundTiesAway



Cryptography Support

 Instruction level support for Cryptography
 Not intended to replace hardware accelerators in an SoC

 AES 
 2 encode and 2 decode instructions

 Work on the Advanced SIMD 128-bit  registers
 2 instructions encode/decode a single round of AES

 SHA-1 and SHA-256  support
 Keep running hash in two 128 bit wide registers
 Hash in 4 new data words each instruction
 Instructions also accelerate key generation



AArch64 – Unbanked Registers

X0 X8 X16 X24
X1 X9 X17 X25
X2 X10 X18 X26
X3 X11 X19 X27
X4 X12 X20 X28
X5 X13 X21 X29
X6 X14 X22 X30*
X7 X15 X23

V0 V8 V16 V24
V1 V9 V17 V25
V2 V10 V18 V26
V3 V11 V19 V27
V4 V12 V20 V28
V5 V13 V21 V29
V6 V14 V22 V30
V7 V15 V23 V31

Media Register File used for:
 Scalar Single and Double Precision FP

 32-bit and 64-bit
 Advanced SIMD for Integer and FP

 64- or 128-bit wide vectors
 Cryptography

64-bit General Purpose Register file used for:
 Scalar Integer computation

 32-bit and 64-bit
 Address computation

 64-bit



AArch64 Banked Registers

 AArch64 Banked registers are banked by exception level

 Used for exception return information and stack pointer

 EL0 Stack Pointer can be used by higher exception levels after 
exception taken

EL0 EL1 EL2 EL3
SP = Stack Ptr SP_EL0 SP_EL1 SP_EL2 SP_EL3

ELR = Exception 
Link Register

ELR_EL1 ELR_EL2 ELR_EL3 (PC)
Saved/Current 
Process Status 

Register

SPSR_EL1 SPSR_EL2 SPSR_EL3 (CPSR)



Exception Model for AArch64

 4 exception levels: EL3-EL0
 Forms a privilege hierarchy, EL0 the least privileged

 Exception Link Register written on exception entry
 32-bit to 64-bit exception  zero-extends the Link Address
 Interrupt masks set on exception entry

 Exceptions can be taken to the same or a higher exception level
 Different Vector Base Address Registers for EL1, EL2, and EL3 

 Vectors distinguish 
 Exception type: synchronous, IRQ, FIQ or System Error
 Exception origin (same or lower exception level) and register width

 Syndrome register provides exception details
 Exception class
 Instruction length (AArch32)
 Instruction specific information



ARMv8 Exception Model

Virtual Machine Monitor (VMM) or
Hypervisor

Guest Operating System1

App2App1

Guest Operating System2

App2App1

(TrustZone) Monitor

Secure World OS

Trusted App2Trusted App1

AArch64: 
separate privilege levels

AArch32:
same privilege level 

EL0

EL1

EL2

EL3

A
A

rch64->A
A

rch32 transition

A
A

rch32->A
A

rch64 transition



Exception model nomenclature

EL2

AArch32 AArch64

EL0

EL1

Secure

User

IF EL3 is 64-bit

Svc Abt Und

FIQ IRQ Sys

Hyp

Non-secure

User

Svc Abt Und

FIQ IRQ Sys

EL3

Secure

EL0

EL1h EL1t

EL3h EL3t

EL2h EL2t

Non-secure

EL0

EL1h EL1t

‘h’andler & 
‘t’hread
stack options

Svc Abt Und

FIQ IRQ Sys
Mon

IF EL3 is 32-bit

ARMv7-A
compatibility



EL1/EL2/EL3 translation contexts

 Exception levels above EL0 manage their own translation context
 Translation base address, control registers, exception syndrome etc
 EL0 translation managed by EL1 

 EL2 manages an additional stage2 of translation for EL1/EL0
 For EL1/EL0 in the Non-secure state only

EL0

EL1

EL2

EL3

EL1

EL0

}

}

Non-Secure
IPA

TTBR0_EL1

TTBR1_EL1

TTBR0_EL2

TTBR0_EL3

TTBR0_EL1

TTBR1_EL1

VTTBR0_EL2 PA (non-secure only)

PA (non-secure only)

PA (secure or non-
secure) 

PA (secure or non-
secure) 

Secure



AArch64 MMU Support

 64-bit architecture gives a larger 
address space
 However little demand this time for 

all 16 Exabytes

 Supporting up to 48 bits of VA 
space for each TTBR
 Actual size configurable at run-time
 Number of levels of translation 

table walk depends on address size 
used

 Upper 8 bits of address can be 
configured for Tagged Pointers
 Meaning interpreted by software

 IPA supports up to 48 bits on same 
basis

 Supporting up to 48 bits of PA 
space 
 Discoverable configuration option

Vi
rtu

al
 A

dd
re

ss

TTBR1 
(kernel) space

TTBR0
(app) space

Not mapped
(Fault)

0

264

0xFFFF000000000000, (264 - 248 )
1 => 0 transition point 
dependent on TCR_EL1.T1SZ value

0x0000FFFFFFFFFFFF, (248 – 1)
0 => 1 transition point 
dependent on TCR_EL1.T0SZ value



Translation Granules

 AArch64 supports 2 different translation granules
 4KBytes or 64KBytes
 Configurable for each TTBR 

 Translation granule is:
 Size of the translation tables in the memory system
 Size of the smallest page supported 

 Larger translation granule gives markedly flatter translation walk
 Particularly where 2 stages of translation are in use



ARMv8-A: page table information 

 4-level lookup, 4KB translation granule, 48-bit address
 9 address bits per level

6
3

5
2

4
8

1
2

2 1 0

Upper attributes SBZ Address out SBZ Lower attributes and validity

VA Bits <47:39> VA Bits <38:30> VA Bits <29:21> VA Bits <20:12> VA Bits <11:0>

Level 1 table index Level 2 table index Level 3 table index Level 4 table (page) index Page offset address

VA Bits <41:29> VA Bits <28:16> VA Bits <15:0>

Level 1 table index Level 2 table (page) index Page offset address

 2-level lookup, 64KB page/page table size, 42-bit address
 13 address bits per level
 3 levels for 48 bits of VA – top level table is a partial table

 64-bit Translation table entry  format



AArch64 Memory model

 ARM architecture has a Weak memory model
 Good for energy 

 Aligned with emerging language standardization
 C++11/C1x memory models and related informal approach

 AArch64 adds load-acquire/store-release instructions
 Added for all single general purpose register load/stores
 Versions added for load-exclusive/store-exclusive as well
 Follows RCsc model

 Store-release -> Load-acquire is also ordered 
 Strong fit to the C++11/C1x SC Atomics

 Best fit of any processor architecture



AArch32 /AArch64 relationship

 Changes between AArch32 and AArch64 occur on exception/exception return only
 Increasing exception level cannot decrease register width (or vice versa)
 No Branch and Link between AArch32 and AArch64

 Allows AArch32 applications under AArch64 OS Kernel
 Alongside AArch64 applications

 Allows AArch32 guest OS under AArch64 Hypervisor
 Alongside AArch64 guest OS

 Allows AArch32 Secure side with AArch64 Non-secure side
 Protects AArch32 Secure OS investments into ARMv8

 Requires architected relationship between AArch32 and AArch64 registers



AArch32/AArch64 relationship

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 (SP)
R14 (LR)

SP_svc
LR_svc

SP_irq
LR_irq

SP_und
LR_und

SP_fiq
LR_fiq

SP_abt
LR_abt

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq

SP_hyp

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R0R0
R1
R2
R3
R4
R5
R6
R7

X16 R14_irq
X17 R13_irq
X18 R14_svc
X19 R13_svc
X20 R14_abt
X21 R13_abt
X22 R14_und
X23 R13_und
X24 R8_fiq
X25 R9_fiq
X26 R10_fiq
X27 R11_fiq
X28 R12_fiq
X29 R13_fiq

X0  R0
X1 R1
X2 R2
X3 R3
X4 R4
X5 R5
X6 R6
X7 R7
X8 R8usr
X9 R9usr
X10 R10usr
X11 R11usr
X12 R12usr
X13 R13usr
X14 R14usr
X15 R13_hyp

X30 R14_fiq

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_hyp
ELR_hyp

SPSR_fiq
AArch32 AArch64

SP_EL0-2
ELR_EL1

SPSR_EL1  SPSR_svc

SPSR_EL2  SPSR_hyp

ELR_EL2  ELR_hyp

Register State relationships below EL3



AArch32 Enhancements 

 ARMv8 includes enhancements to AArch32
 Brings in new functionality independent of register width
 ARMv8 is not the end of the road for AArch32

 Main enhancements:
 Load acquire/store release and improved barriers
 Cryptography instructions 
 Some additional improvements for IEEE754-2008



Debug in ARMv8

 ARM Hardware Debug support falls into 2 basic categories:
 Self-hosted debug for debug facilities used by the operating system/hypervisor
 Halting debug for external “target debug” where debug session is run on a separate 

host 

 Self-hosted debug is basically part of the exception model
 Hardware watchpoints and breakpoints to generate exceptions on debug events
 Exceptions handled by a debug monitor alongside the OS Kernel or Hypervisor
 AArch32 self-hosted (“monitor”) capability unchanged from ARMv7

 AArch64 self-hosted debug is strongly integrated into AArch64 exception model
 Breakpoint and Watchpoint Addresses grow to 64-bits
 Introduces an explicit hardware single step when debug monitor using AArch64 

 Halting Debug view is not backwards compatible with ARMv7
 External Debugger will need to change - even for fully AArch32 operation



Trace Support

 Embedded Trace in the Cortex-A profile limited to program 
flow trace
 Shows the “waypoints” of instruction execution
 Does not provide address or data value information 
 ARMv7 current position for Cortex-A9 and Cortex-A15

 New ETM protocol (ETMv4) works with ARMv8
 Widens addresses to 64 bits
 Better compression than ETMv3
 For ARMv8 A-profile, will only support waypoint information



ARMv8-A rollout

 Plenty of headroom for ARMv7 in many markets
 ARMv7-A is today, ARMv8-A is tomorrow
 AArch64 ecosystem will take time to develop – need to start this process more widely

 TechCon 2011 – developer preview for ARMv8-A
 Begins process of revealing ARMv8-A to wider developer community
 Enables open and informed discussion of the topic – by ARM and partners

 2012 – will start seeing up-streaming open-source materials
 Detailed specifications planned to be released in the second half of 2012

 ARM is working with architectural partners and on its own 
implementations

 No Product announcement from ARM for ARMv8-A at this 
time



Conclusion

 ARM is well advanced in development of ARMv8-A
 ARMv8-A is the largest architecture change in ARM’s history
 Positions ARM to continue servicing current markets as their 

needs grow

 Cortex-A15 & other ARMv7 parts are the top end for ARM today
 Provide a lot of capability for the next few years

 Architectural roadmap into the future now clear


	ARMv8�Technology Preview
	What is ARMv8?
	ARMv8-A – Context
	AArch64 - Motivation
	AArch64 State Fundamentals
	A64 New Instruction Set - 1 
	A64 – Key differences from A32 
	A64 Advanced SIMD and �FP  Instruction Set
	Cryptography Support
	AArch64 – Unbanked Registers
	AArch64 Banked Registers
	Exception Model for AArch64
	ARMv8 Exception Model
	Exception model nomenclature
	EL1/EL2/EL3 translation contexts
	AArch64 MMU Support
	Translation Granules
	ARMv8-A: page table information 
	AArch64 Memory model
	AArch32 /AArch64 relationship
	AArch32/AArch64 relationship
	AArch32 Enhancements 
	Debug in ARMv8
	Trace Support
	ARMv8-A rollout
	Conclusion

