
ENEE 447: Operating Systems — Course Syllabus

Basic Information
Time & Place

Lecture: TuTh 11:00am – 12:15pm, EGR-1108 All Lab Recitations: AVW-1442
Section 0101 Lab: Mon 12:00pm – 1:50pm TA: Tauqir Abdullah, tauqir.abdullah@gmail.com 
Section 0102 Lab: Mon 2:00pm – 3:50pm TA: Dylan O'Reagan, oreagandylan@gmail.com 
Section 0103 Lab: Wed 12:00pm – 1:50pm TA: Tauqir Abdullah, tauqir.abdullah@gmail.com 
Section 0104 Lab: Wed 2:00pm – 3:50pm TA: Dylan O'Reagan, oreagandylan@gmail.com

Professor

Bruce L. Jacob: AVW-1333, blj@umd.edu  
Office hours: open-door policy

Class Home Page

http://www.ece.umd.edu/courses/enee447

Class Email List

enee447-01all-spr19@coursemail.umd.edu

Class Schedule
This is a weekly schedule of my hours, including class time and scheduled office hours, but also
including other things that make me unavailable. It is subject to change.

MON TUE WED THU FRI

9–9:30

9:30–10

10–10:30

10:30–11

11–1:30
ENEE 447  
Lecture EGR-1108

ENEE 447  
Lecture EGR-1108

11:30–12

12–12:30

12:30–1

1–1:30

1:30–2

2–2:30

Weekly meeting
with grad students

2:30–3

3–3:30

3:30–4

4–4:30

4:30–5

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �1

Course Syllabus
ENEE 447: Operating Systems — Spring 2019
Prof. Bruce Jacob

mailto:blj@ece.umd.edu

ENEE 447: Operating Systems — Course Syllabus

Course Overview
This course covers the design and development of operating systems and how they interact with the
hardware on which they run. We will cover concepts such as multicore processors, interrupts and
timers, coherence and multiprocessing, interprocess communication, multiple privilege levels and
virtualization, processes and threads and context switching, virtual memory, permanent storage, flash
memory systems, and more. The course is intended to give you a solid understanding of how
operating systems are implemented today, but more importantly how they will be implemented
tomorrow: it turns out that several advances at the hardware level (multicore and nonvolatile
memories, in particular) now render moot a number of operating systems designs from the past.
You will learn the course concepts by not only reading about them but by building them; you will
help design and then build a working operating system, from the ground up, on top of bare-metal
hardware. The operating system will be written in assembly code and C (mostly C), and it will run
on the popular Raspberry Pi platform. Because of the importance of multicore architectures on
system-level programming, we will be focusing exclusively on the Raspberry Pi 3B+, because it has a
quad-core, 64-bit ARM processor in it (Broadcom BCM2837, Cortex-A53). Programming for
multiple cores is extremely challenging, and so it will be one of the main areas of focus in this course.
Building actual code on actual multicore hardware is interesting for several reasons. First, you must
be infinitely more precise in your design than if you built your software for a simulator platform.
Among many other differences, simulators only emulate simultaneity, they don’t actually do it. Thus,
they cannot generate real race conditions the way actual hardware does. This is good because
programming for real multicore hardware will force you to understand all the finer points of your
design and code implementation, as well as the ramifications of all your choices—if you are not
thorough, it will not work. Second, real hardware implements numerous features that hardware
simulators either can’t do (such as simultaneity) or don’t do, such as offer multiple protection levels.
This is becoming extremely popular in datacenters, where it is simpler to run processes in virtual OS
bottles than it is to run them directly on the main OS. These virtual OSes should have access to
mechanisms unavailable in user mode, but they should not have free run of the machine. This is
where multiple protection domains, such as hypervisor modes, come in. Knowing how these work
and how to program for them is an advanced skill. Lastly, it’s just kinda cool to have a working
operating system that you built, running on a computer that you can hold in your hand.

Prerequisites
Students must have taken ENEE 350, or have equivalent knowledge of computer organization. You
should understand what the program counter is and how it works, what the register file is and how it
works, what a cache is and how it works, what memory is and how it works, etc. You must
understand what assembly code is and how it works. Students should also have taken CMSC 330
and 351 and be adept in code development. You should understand and be extremely fluent in
programming in C, e.g. using arrays, structures, functions, and pointers. The C language is
particularly useful for our purposes in this class, as C was designed and written specifically to enable
the development of an extremely powerful (and, now, popular) real-time operating system: Unix.

Course Materials
The course has the following required materials:

Operating Systems: Three Easy Pieces, by Arpaci-Dusseau & Arpaci-Dusseau 
 • textbook is available for free in PDF at http://pages.cs.wisc.edu/~remzi/OSTEP/ 
 • hardcopy can be purchased at lulu.com

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �2

http://pages.cs.wisc.edu/~remzi/OSTEP/

ENEE 447: Operating Systems — Course Syllabus

Raspberry Pi 3 Model B+, containing a 64-bit, 4-core Cortex-A53 ARM processor 
 • lots and lots and lots of info at https://www.raspberrypi.org 
 • board can be purchased for $35 at numerous sites 
 • you will also need a micro-SD card and SD adapter (look for RPi’s NOOBS) 
 • lastly, you will need a USB-serial cable (also called a “console cable”) 
 (see https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable)

You must purchase your own RPi3 board, console cable, and Class-10 SD/microSD card (it is
important that it be Class 10), so that you can do code development on your own, whenever and
wherever you want. If you do not have an SD card reader built into your laptop, you will need to
purchase your own USB-based card reader.
In addition, the following book is not required but is highly recommended, as it is brilliantly written
(very dense, lots of information in a small space, very thin book) by the guys who invented the
language:

The C Programming Language (2nd Ed.), by Kernighan & Ritchie
This is an invaluable book, and every serious programmer I know has a worn-out copy of it.
Another very useful book is the following in-depth treatment of the ARM architecture, written by
designers at ARM:

ARM System Developer’s Guide, by Sloss, Symes, and Wright
This will help you better understand the ARM platform and how to write low-level software for it.
Everything else will be handed out in class and posted on the course website.

Class Projects
A number of projects will be assigned during the term, each of which will require a substantial time
commitment on your part. You will find the work load in this course to be extremely heavy. The
projects will build upon each other, so you will need to keep up in order to finish a working OS by
the end of the semester. Here is the tentative list of projects:

• Project 0: Purchase Raspberry Pi 3B+ board 
 Get aarch64-elf cross-compilation environment up and running 
 Design and build a timer facility

• Project 1: Purchase USB-serial “console cable” and install driver 
 Get the echo server up and running

• Project 2: Design and build a timeout queue facility (i.e., the Unix callout table)
• Project 3: Implement interrupts & vectors in a single monolithic kernel

• Project 4: Design and build an inter-process communication facility

• Project 5: Implement context switch in isolation  
 (using a rudimentary scheduler: a timed swapper)

• Project 6: Implement system-call facility for user-level applications 
 Implement master-slave forced distributed context switch  
 (core0 interrupts cores 1&2, moves running user app from core1 to core2)

• Project 7: Implement virtual memory in isolation

• Project 8: Implement multiple security levels (user-level, hypervisor, system)

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �3

https://www.raspberrypi.org
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/overview

ENEE 447: Operating Systems — Course Syllabus

• Project 9: Design and implement “full” suite of system calls

• Project 10: Access flash memory in isolation

• Project 11: Implement permanent objects, combined VMFS

• Project 12: Final operating system, including multiple security levels, multiple user-level
 applications, scheduling and context switching, real-time interaction,
 flash-based memory system with permanent objects [and hot restart?]

If it is not abundantly clear, this represents an enormous amount of work. The most common reason
for not doing well on projects is not starting them early enough. You are given plenty of time to
complete each project. However, if you wait to start until the week it’s due, you will not be able to
finish. Plan to do some work on a project every day. Also plan to have it finished several days ahead
of the due date—many, many, many unexpected problems arise during debugging. You will find that
this is not normal code development. Plan for this to happen. Your lack of starting early is not an
excuse for turning in your project late, even if unfortunate situations arise such as lost SD cards, dead
laptops, etc.
There are many sources of help on which you can draw. Simple questions can be submitted to the
professor and fellow classmates via email (use the email list given on page 1). These will typically be
answered within the day, often more quickly during working hours. Keep in mind, however, that
many types of questions cannot be answered without seeing your project. If you have detailed
questions, your best option is to speak to the TA or professor in person during office hours. Bring
along a listing of your project and your SD card & RPi board. Students are also encouraged to help
one another. One of the best ways for you to make sure that you understand a concept is to explain it to
someone else. Keep in mind, however, that you should not expect anyone else to do any part of your
project for you. The project that you turn in must be your own.

When Projects Are Due

Projects are assigned on Tuesdays and will be due during the recitation labs: they will be
demonstrated by you to the TA during your lab/discussion section. At that time, you will explain
and demonstrate your code to the TA. So that the later sections have no time advantage, all projects
will be due before midnight on Sunday, via the submit facility. That means you must submit all of your
work on or before 11:59 pm Sunday night, prior to the Monday morning lab at which the first
students will explain their projects to the TA. Please note: 12:00 am is Monday morning, not Sunday
night. One minute late is late. Submitting Sunday night will allow the TA time to collect your
submissions and gather them onto his laptop for evaluation. Because this is not a simple “hand it in”
submission procedure, the requirement is also that every student be present at the lab/discussion
section to explain their code to the TA.
Sometimes unexpected events make it difficult to get a project in on time. For this reason, each
student will have a total of 3 free late days to be used for projects throughout the semester. These
late days should only be used to deal with unexpected problems such as computer crashes, illness,
etc. They should not be used simply to start later on a project or because you are having difficulty
with the project.
Projects received after the start of Monday morning’s recitation section following the due date
(assuming that you have no late days left) will receive a zero, even if you walk in the door one
minute late. I advise you to save at least one or two late days for the last projects.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �4

ENEE 447: Operating Systems — Course Syllabus

How Projects Are Graded

Again, you will explain your code to the TA, and you will demonstrate it during the Friday lab. The
projects will be graded primarily for correctness: doing all the required tasks, adhering to whatever
given time requirements are specified, and giving correct results. We will test your projects on various
input sets that are not the same as what is handed out with the project.

Thoughts on Collaboration

Regarding what is and is not okay to do (thanks to the folks at Wisconsin) …
It is considered PERFECTLY ACCEPTABLE to do the following:

• discuss the project in general terms (“what do they mean by a vector table?”)

• discuss strategies for successful implementation (“our data-structure format is simple!”)

• help others debug small snippets of their code and find problems

• ask the TA or professor or both for as much help as you need!
It is NOT OK to do the following:

• bug someone else for a lot of help (particularly if they are already done!)

• share your code directly with other people (“oh, you want to know how to get the timer to stop
interrupting? well here is my code, and it works, so you can just use/copy that”)

Discovery of any inappropriate code sharing will lead to harsh penalties for all involved parties.
This draconian policy is put in place to protect the vast majority of you who do put in the hard work
on the projects.

Exams
You are expected to take both the midterm and final exams at the scheduled times. Unless a
(documented) medical or personal emergency is involved in your missing an exam, you will receive a
zero for that exam. If you anticipate conflicts with the exam time, you must come talk to the
instructor about it at least 1 month before the exam date. The exam dates are given at the beginning
of the term so that you can avoid scheduling job interviews or other commitments on exam days.
Outside commitments are not considered a valid reason for missing an exam. Exams will be closed
book, closed notes.

Grading Policy
Final grades will be based on the total of points earned on the projects and exams. The tentative
point breakdown is as follows. For those of you with mad math skills, yes, you get 2% extra credit.

• Projects: 52% (13 projects, 4% each)

• Midterm Exam: 25%

• Final Exam: 25%
Incompletes will generally not be given. According to university policy, doing poorly in a course is
not a valid reason for an incomplete. If you are having problems in the course, your best bet is to
come talk to the instructor as soon as you are aware of it.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �5

ENEE 447: Operating Systems — Course Syllabus

Tentative Lecture & Project Schedule

Special Needs
If you have a documented disability that requires special needs, please see me as soon as possible, and
certainly no later than the third week of classes.

Week of Subject Readings Projects

Jan 28 Intro: overview of course, the concept of time & timing Ch. 2, 3 P0 out

Feb 4 How hardware actually works (interrupts, I/O regs, call stacks, etc.) Ch. 4–6, 33 P1 out, P0 due

Feb 11 Interprocess Communication (IPC) Ch. 25–27, 32, 47 P2 out, P1 due

Feb 18 Synchronization & deadlocks Ch. 7–10, 28–31 P3 out, P2 due

Feb 25 Processes & scheduling & security Ch. 11,12 P4 out, P3 due

Mar 4 Memory management & virtual memory — software Ch. 13–18 P5 out, P4 due

Mar 11 Memory management & virtual memory — hardware Ch. 19–24 P6 out, P5 due

Mar 18 Spring Break

Mar 25 Review & Midterm (March 28, in class) P7 out, P6 due

Apr 1 Persistence, permanent object stores Ch. 35–37 P8 out, P7 due

Apr 8 File systems, data integrity Ch. 38–41 P9 out, P8 due

Apr 15 Flash basics, ECC, etc. Ch. 42–45 P10 out, P9 due

Apr 22 Advanced topics & case studies Handouts P11 out, P10 due

Apr 29 Advanced topics & case studies Handouts P12 out, P11 due

May 6 Advanced topics & case studies Handouts

May 13 Final Review P12 due

Exams Final Exam (Thursday, May 16, 8:00am–10:00am, in classroom)

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �6

