
ENEE 447: Operating Systems — Project 3 (4%)

Purpose
This project has you implement vectored interrupts on the Raspberry Pi. Vectored interrupts are one of 
the most important facilities that hardware offers, because they allow a wide range of asynchronous 
operation to occur — whenever an interrupt occurs, the PC is redirected to a completely different 
location, which allows the operating system to split its attention between multiple things.  

Vectored Interrupts in ARM
The ARM implementation puts the vector table at the very start of memory, and it must contain a set of 
jump instructions as opposed to jump addresses. A typical layout might look like the following: 

.globl _start 
_start: 
 // jump table: 
 b res_handler   // RESET handler  - runs in SVC mode  
 b und_handler   // UNDEFINED INSTR handler - runs in UND mode  
 b swi_handler   // SWI (TRAP) handler  - runs in SVC mode  
 b pre_handler   // PREFETCH ABORT handler - runs in ABT mode  
 b dat_handler   // DATA ABORT handler  - runs in ABT mode  
 b hyp_handler   // HYP MODE handler  - runs in HYP mode  
 b irq_handler   // IRQ INTERRUPT handler - runs in IRQ mode  
 1st instr of FIQ handler // FIQ INTERRUPT handler - runs in FIQ mode  
 … (FIQ handler can simple be written in-line) 

So, whenever the system takes a RESET interrupt, the number 0x00000000 is loaded into the program 
counter, which causes the processor to jump to address zero. At address zero is an instruction 

b res_handler 

that tells the hardware to branch to the location of res_handler.  
Similarly, whenever the system takes a SWI interrupt (which is caused by the svc assembly-code 
instruction), the number 0x00000008 is loaded into the program counter, which causes the processor to 
jump to address 0x08 (the third word in memory). At address 0x08 is an instruction 

b swi_handler 

that tells the hardware to branch to the location of swi_handler. 
And so forth. Note that the ‘b’ instruction cannot jump arbitrarily far, so your code can’t be spread far 
and wide … but for the purposes of our projects, this should not be an issue. 

Ridiculously Simple Shell
Right now, you have worked with several functions that the operating system can provide to users, 
including getting the time from a running clock, pointing debug/logging info to the console, blinking the 
LED, etc. The following shows an extremely simple user interface that can access some of these features: 

[c0|00:02.021] ... 
[c0|00:02.023] System is booting, cpuid = 00000000 
[c0|00:02.027] Kernel version: [p3-solution, Mon Mar 4 16:40:18 EST 2019]  
[c0|00:02.034] Available devices: 
[c0|00:02.037] Null 
[c0|00:02.039] Device number:  00000000 
[c0|00:02.043] Device type:    00000000 
[c0|00:02.046] Init function:  000000DC 
[c0|00:02.050] Read function:  000000DC 
[c0|00:02.053] Write function: 000000DC 

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �1

Project 3: Simple Shell & System Calls (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned:  Tuesday, Feb 26;  Due:  Sunday, Mar 10



ENEE 447: Operating Systems — Project 3 (4%)

[c0|00:02.057] LED 
[c0|00:02.059] Device number:  00000001 
[c0|00:02.062] Device type:    00000001 
[c0|00:02.066] Init function:  00000670 
[c0|00:02.069] Read function:  00000474 
[c0|00:02.073] Write function: 000004A4 
[c0|00:02.077] Console 
[c0|00:02.079] Device number:  00000002 
[c0|00:02.082] Device type:    00000001 
[c0|00:02.086] Init function:  00001694 
[c0|00:02.090] Read function:  000004D0 
[c0|00:02.093] Write function: 000004E0 
[c0|00:02.097] Clock 
[c0|00:02.099] Device number:  00000003 
[c0|00:02.102] Device type:    00000002 
[c0|00:02.106] Init function:  0000123C 
[c0|00:02.109] Read function:  000004F4 
[c0|00:02.113] Write function: 00000474 
[c0|00:02.117] KernLog 
[c0|00:02.119] Device number:  00000004 
[c0|00:02.122] Device type:    00000002 
[c0|00:02.126] Init function:  00000900 
[c0|00:02.130] Read function:  00000474 
[c0|00:02.133] Write function: 00000458 
[c0|00:02.137] ... 
[c0|00:02.139] Please hit any key to continue. 

<the ENTER key is pressed> 

Running shell. 
Available commands: 
 LED  = 0044454C 
 LOG  = 00474F4C 
 TIME = 454D4954 
 EXIT = 54495845 

Please enter a command. 
> LED 
CMD_LED - on 

Please enter a command. 
> LED 
CMD_LED - off 

Please enter a command. 
> LOG "THIS IS A TEST MESSAGE" 
[c0|00:30.303] THIS IS A TEST MESSAGE 

Please enter a command. 
> TIME 
CMD_TIME = [00000000 02441F42] 

Please enter a command. 
> EXIT 
CMD_EXIT exiting ... 

The system boots up in kernel mode and runs the shell in kernel mode, That means that all facilities are 
available to the shell, for now. We have given you the base code that parses the input, and it is up to you 
to arrange it into a system-call-like framework so that the correct functions are called. 

The Simplest Possible Operating System
At its simplest, an OS is nothing more than a collection of vectors: it does nothing unless it is responding 
to interrupts. This is what we will be building in Projects 3 and 4. Project 3 implements a system-call 
facility and provides an extremely rudimentary shell that runs in user mode — but still within the kernel 
proper, for now. As shown above, the shell understands the following commands: 

• led — toggles the LED on and off. 

• time — gets the 64-bit time value from the kernel into a 64-bit “long long” integer (a uint64_t). 

• log “string” — sends the string (which may contain spaces) to the kernel, which prints it out as a 
console log message 

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �2



ENEE 447: Operating Systems — Project 3 (4%)

• exit — exits the shell. 
The led, time, and log functions all call the kernel via system calls. In addition, the character I/O that the 
shell uses to receive the keyboard input and print to the screen is all handled via the system-call facility as 
well. You will find that the shell, because it runs in user mode, does not have direct access to the UART or 
other I/O facilities that the kernel controls … that is why system calls are used in real systems. 

Generalized/Virtualized I/O Devices
You will see that the I/O subsystem makes significant use of indirection. There are two forms of I/O 
supported in the kernel: 

• word-granularity. These I/O operations require only a single atomic data structure: a 32-bit 
integer or smaller. Thus, this can perform character I/O and data transfers of words, but not 
larger-granularity data items such as strings or blocks of data. The devices that use word-
granularity I/O include the following: 

- LED. The LED is write-only and takes a zero/nonzero value in its word to indicate that the 
LED should be turned off/on, respectively. A read of the LED simply returns a ‘1’ 
indicating non-error.  

- Console. The Console is the system terminal (keyboard and monito) and is read/write at a 
character granularity. This is the UART device.  

The two I/O system calls that handle word-granularity I/O are read and write and are defined as 
follows: 
 int syscall_read_word(int device_number); 

 int syscall_write_word(int device_number, long data_value); 

These load the registers as needed and call an SVC assembly-code instruction, which interrupts 
the operating system. 

• stream-based. These I/O operations transfer data in larger granularities than what can fit in a 
single register. Thus, this is how one handles data items such as strings or blocks of data. The 
devices that use stream-based I/O include the following: 
- Clock. The Clock is read-only. The Clock device returns a 64-bit integer value, which 

causes problems because the 32-bit ARM cores can only handle 32 bits at a time. Even 
though the compiler can create “long long” data structures, this cannot be transferred 
through a single register and thus may not work as an atomic return value from a simple in-
kernel I/O routine transferring interrupt-return values through the register file. Thus, we 
will implement the Clock device by having the kernel copy 8 bytes from kernel space to 
user space. 

- Kernel Log. The Kernel Log device is write-only at a string granularity. We will assume that 
strings are the size of a character buffer (CBUFSIZE bytes) or smaller (this will come into 
play in the next project). 

The two I/O system calls that handle stream-based I/O are read and write and are defined as 
follows: 
 int syscall_read_stream(int device_number, void *buffer, int bufsize); 

 int syscall_write_stream(int device_number, void *buffer, int bytes); 

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �3



ENEE 447: Operating Systems — Project 3 (4%)

These load the registers as needed and call an SVC assembly-code instruction, which interrupts 
the operating system. The buffer pointers must point to statically allocated space within the 
calling entity. The read function’s bufsize argument is the size of the buffer (a maximum number 
of bytes to return, including a ‘\0’ character at the end of a string); the write function’s bytes 
argument is the maximum number of bytes to write to the device. 

You will see within the io.c module the following data structure: 
// 
// struct dev { 
//  char name[8]; 
//  int type; 
//  pfv_t init(); 
//  pfi_t read(); 
//  pfi_t write(); 
// } 
// 

struct dev devtab[MAX_DEVICES+1] = { 
    { 
        "Null", 
        DEV_INVALID, 
        dummy, 
        (pfi_t)dummy, 
        (pfi_t)dummy, 
    }, 

    { 
        "LED", 
        DEV_WORD, 
        init_led, 
        io_read_led, 
        io_write_led, 
    }, 

    { 
        "Console", 
        DEV_WORD, 
        init_uart, 
        io_uart_recv, 
        io_uart_send, 
    }, 

    { 
        "Clock", 
        DEV_STREAM, 
        init_time, 
        io_get_time, 
        io_error, 
    }, 

    { 
        "KernLog", 
        DEV_STREAM, 
        init_log, 
        io_error, 
        io_klog, 
    }, 

    { 
        "NONE", 
        DEV_INVALID, 
        (pfv_t)io_error, 
        io_error, 
        io_error, 
    }, 

}; 

This is the collection of read/write and init functions that are set up for each specific device. The init_io() 
function calls each of the init() functions in sequence, at which point all devices are initialized and ready 
for I/O. In the trap_handler, user requests to read and write these devices are vectored to the appropriate 
routing by indexing into this table. For instance, to read a character from the keyboard, one calls a read() 
function on the Console device: the system call is a SYSCALL_RD_WORD type, and the Console has 

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �4



ENEE 447: Operating Systems — Project 3 (4%)

device number 2. The trap_handler function thus indexes into this table to the 2nd entry and calls its 
read() function. Because it is a SYSCALL_RD_WORD system call, the trap handler invokes it simply as  

<device>.read(); 

because, as described above, beyond the device number (which is used by the trap_handler to find the 
device-specific read/write routines and thus is not handed to the device-specific read/write routines), the 
word-granularity read() function takes no argument and simply returns a single word-sized value. 
To write a value to the monitor, one calls a write() function on the Console device: the system call is a 
SYSCALL_WR_WORD type, and the Console has device number 2. The trap_handler function thus 
indexes into this table to the 2nd entry and calls its write() function. Because it is a 
SYSCALL_WR_WORD system call, the trap handler invokes it as  

<device>.write(data_value); 

because, as described above, beyond the device number (which is not handed to the device-specific read/
write routines), the word-granularity write() function takes a single argument that is a word-sized value to 
be written to the device. 
To write a string to the kernel’s log, one calls a write() function on the KernLog device: the system call is a 
SYSCALL_WR_STREAM type, and the KernLog has device number 4. The trap_handler function thus 
indexes into this table to the 4th entry and calls its write() function. Because it is a 
SYSCALL_WR_STREAM system call, the trap handler invokes it as  

<device>.write(data_ptr, len); 

because, as described above, beyond the device number (which is not handed to the device-specific read/
write routines), the stream write() function takes a data pointer and a length. Because the I/O routine for 
the KernLog is specific to that device, it knows that it will receive a character pointer to a string, so it can 
be written to expect a char * as an argument. 
To get the system time, one calls a read() function on the Clock device: the system call is a 
SYSCALL_RD_STREAM type, and the Clock has device number 3. The trap_handler function thus 
indexes into this table to the 3rd entry and calls its read() function. Because it is a 
SYSCALL_RD_STREAM system call, the trap handler invokes it as  

<device>.read(data_ptr, len); 

because, as described above, beyond the device number (which is not handed to the device-specific read/
write routines), the stream read() function takes a data pointer and a buffer size. Because the I/O routine 
for the Clock is specific to that device, it knows that it will receive a pointer to a uint64_t (an unsigned 
long long data type), so it can be written to expect a unit64_t * as an argument. 
And so forth. The reason operating systems design things this way is to make them easily extendable to 
handle numerous different device types. 

Implement System Calls via Vectored Interrupts
Your task is to implement the ARM vector table (see the example jump table shown above) and the SVC 
interrupt handler. We will give you code that drives most of this; your job is just to set up the jump table 
how you want it, finish the handler, write the system calls that actually call the kernel from user mode, 
and finish the I/O handling from within the kernel at the other end of the trap (what goes on in 
trap_handler and the io.c module). The boot code you are given starts up the processor and ultimately 
runs the shell process (run_shell) in user mode. 

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �5



ENEE 447: Operating Systems — Project 3 (4%)

A Note on Modes and Stacks
Note that each of the vectors runs in a different mode (except for two that both run in ABT mode). 
Recall the register-file arrangement in the ARM architecture:

  
When a mode is invoked, its corresponding register set becomes visible. So, for instance, each mode has 
its own banked stack pointer and link register — the sp/lr registers, r13 and r14. In addition, the FIQ 
mode also has its own private r8–r12 registers. Why this is interesting is that you can set up a separate 
stack for each mode that becomes visible when that mode is invoked. The code is as follows: 

.equ USR_mode,   0x10 

.equ FIQ_mode,   0x11 

.equ IRQ_mode,   0x12 

.equ SVC_mode,   0x13 

.equ HYP_mode,   0x1A 

.equ SYS_mode,   0x1F 

.equ No_Int,     0xC0 

    cps     #IRQ_mode 
    mov     sp, # IRQSTACK0 

    cps     #FIQ_mode 
    mov     sp, # FIQSTACK0 

    cps     #SVC_mode 
    mov     sp, # SVCSTACK0 

    cps     #SYS_mode 
    mov     sp, # KSTACK0 

This has been set up for you in the file 1_boot.s. 

A Note on “USR” Mode vs. “SVC” Mode
This project is structured to emulate the behavior of user code invoking the operating system, but as you 
will probably realize when you start writing, compiling, and running the code, the “user” code is in the 

Interrupt handling 11

ARM Processor

Figure 1.7 Register organization

On the ARM processor there are 17 registers always available in any mode and 18 
registers in a privileged mode. Each mode has a set of extra registers called banked 
registers (see figure 1.7). Banked registers are swapped in, whenever a mode 
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into 
SPSR_irq. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into 
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked 
register is denoted by _irq or _fiq, so for example the banked register for r13 in IRQ 
mode is shown as r13_irq. 

Note: This is particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the 
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14/LR

r12

r13/SP

r15/PC

cpsr

-

r0

r1

r9_fiq

r2

r3

r4

r5

r6

r7

r8_fiq

r10_fiq

r11_fiq

r14_fiq

r12_fiq

r13_fiq

r15/PC

-

spsr_fiq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_irq

r12

r13_irq

r15/PC

-

spsr_irq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_svc

r12

r13_svc

r15/PC

-

spsr_svc

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_undef

r12

r13_undef

r15/PC

-

spsr_undef

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_abort

r12

r13_abort

r15/PC

-

spsr_abort

User/System FIQ IRQ SVC Undef Abort

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �6



ENEE 447: Operating Systems — Project 3 (4%)

same binary as the “kernel” code! How could that be considered “user” code? Well, at this point, we have 
not developed the concept of multiple tasks, and we have not developed the concept of virtual memory, 
and so having a separate binary is a little beyond what we can do (for the moment).  
However, we do not need any of those facilities to accomplish the goal of setting up a system-call interface. 
The multiple privilege levels allow us to emulate the behavior all in one binary. You will notice in the 
1_boot.s code the kernel is invoked, to initialize everything, and then the process is set to USR mode and 
“user” code is called: 

cps  #SYS_mode 
mov  sp, # KSTACK0 
bl  init_kernel 

// set up user stack and jump to shell 
cps  #USR_mode 
mov  sp, # USTACK0 
bl  run_shell 

The shell is invoked, and it runs in USR mode, which does not have access to the various facilities 
(including the various devices) that are available in SYS mode or SVC mode. Effectively, in this project, 
you are running two separate things 
1. the kernel code, which runs in privileged mode and has direct access to the various devices 
2. the “user” code which runs in user mode (non-privileged mode) and does NOT have access to the 

various devices 
Even though the “user” code is in the same binary as the kernel (for now), you should still think of it as a 
“user” program. It does not have access to any of the kernel facilities, in particular.  
That means that, within the shell, log() does not work, led_on()/led_off() don’t work, and none of the 
other routines work, either [e.g., uart_put32x()/uart_puts(), etc.] While they are not available directly, they 
are available indirectly. You have to get to those functions through system calls. That is kind of the point 
of the project. The only things you should be using in user space are functions in the u_* and z_* files and 
the system calls provided to you. 

Build It, Load It, Run It
Once you have it working, show us.

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �7


