
ENEE 447: Operating Systems — Project 4 (4%)

Purpose
In this project you will implement context switching on the Raspberry Pi, using perhaps the simplest 
possible scheduling algorithm: on every timer tick you will switch back and forth between two processes 
(i.e., if thread 0 is running, change to thread 1; if thread 1 is running, change to thread 0). The two 
threads will be in the same address space, so we will not have to worry about saving and restoring 
anything other than the register file contents (for instance, once we have virtual memory running, you 
will have to save special control registers related to that). Context switching obviously represents the 
underpinning of all multitasking and multiprocessing and is thus one of the operating system’s most 
fundamental and powerful mechanisms. From this point, you will be able to implement much more 
sophisticated scheduling algorithms and juggle any number of simultaneous threads. 

Context Switch in ARM
Recall the register-file arrangement in the ARM architecture:

  
The IRQ vector shares a number of registers with code running in USR mode: r0–r12 and the program 
counter are common, while the IRQ vector runs in a mode that has its own stack pointer (r13) and link 
register (r14).  
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Figure 1.7 Register organization

On the ARM processor there are 17 registers always available in any mode and 18 
registers in a privileged mode. Each mode has a set of extra registers called banked 
registers (see figure 1.7). Banked registers are swapped in, whenever a mode 
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into 
SPSR_irq. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into 
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked 
register is denoted by _irq or _fiq, so for example the banked register for r13 in IRQ 
mode is shown as r13_irq. 

Note: This is particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the 
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.
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Among many other things, what this means is that, assuming you have a register-save area of sufficient 
size, located at threadSave, then the following code will save all of the registers visible in USR and SYS 
modes: 

save_r13_irq: .word 0 

irq_nop: 
    // save the registers 
    str     r13, save_r13_irq           @ save the IRQ stack pointer  
    ldr     r13, =threadSave            @ load the IRQ stack pointer with address of TCB  
    add     r13, r13, #56               @ jump to middle of TCB for store up and store down  
    stmia   sp, {sp, lr}^               @ store USR stack pointer & link register, upwards  
    push    {r0-r12, lr}                @ store USR regs 0-12, IRQ link register, downwards 

    @ regs saved, we can now destroy stuff 

    // 
    // clear timer interrupt (we get here from timer) 
    // 
    bl  clear_timer_interrupt 

    @ clobber the user stack - simulates effect of another thread running  
    @ clobber the user stack - simulates effect of another thread running  
    @ clobber the user stack - simulates effect of another thread running  
    mov     r2, # SYS_mode 
    msr     cpsr_c, r2 
    ldr     r0,badval 
    ldr     r1,badval 
    ldr     r2,badval 
    ldr     r3,badval 
    ldr     r4,badval 
    ldr     r5,badval 
    ldr     r6,badval 
    ldr     r7,badval 
    ldr     r8,badval 
    ldr     r9,badval 
    ldr     r10,badval 
    ldr     r11,badval 
    ldr     r12,badval 
    ldr     r13,badval 
    ldr     r14,badval 
    mov     r2, # IRQ_mode 
    msr     cpsr_c, r2 
    @ clobber the user stack - simulates effect of another thread running  
    @ clobber the user stack - simulates effect of another thread running  
    @ clobber the user stack - simulates effect of another thread running 

    // reset the timer 
    bl      set_timer 

    // restore the registers 
    ldr     r13, =threadSave            @ load the IRQ stack pointer with address of TCB  
    pop     {r0-r12, lr}                @ load USR regs 0-12 and IRQ link register, upwards  
    ldmia   sp, {sp, lr}^               @ load USR stack pointer & link register, downwards  
    nop                                 @ evidently it's a good idea to put NOP after LDMIA  
    ldr     r13, save_r13_irq           @ restore the IRQ stack pointer from way above  
    subs    pc, lr, #4                  @ return from exception 

This code does several things. First, it saves the stack pointer sp/r13 into a known location. Then, it saves 
the thread context on an array of words pointed to by threadSave: this is done by first jumping into the 
middle of the array, storing two values upward, and then storing 14 values downwards. Once those values 
are saved, it is free to destroy the register file contents (which simulates a context switch to another 
thread). The handler changes to SYS mode, which shares the same register file as USR mode, and it loads 
a garbage value into registers 0–14. Then it jumps back into the IRQ handler’s mode, restores the 
previously saved state, and exits. 
This code is given to you in the project source directory for p4. The entire project, as presented to you, 
compiles and runs, with the exception of the code you are currently writing for Project 3. With it, you 
will build the penultimate feature of The Simplest Possible Operating System™ — the preemptive context 
switch. 
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The Simplest Possible Operating System™
As said before, at its simplest, an OS is nothing more than a collection of vectors: it does nothing unless it 
is responding to interrupts. This is what we will be building in Projects 3, 4, and 5. Project 3 
implemented a system-call facility and provided an extremely rudimentary shell that runs in user mode — 
but still within the kernel proper, for now. Project 4 adds to that the preemptive context switch and a 
rudimentary scheduler: switch processes every time quantum. The code for saving and restoring state is 
provided above, and your job is to use this to create the scheduler and context-switch mechanism. 
The scheduler will be invoked through a timer interrupt that comes into the kernel through the IRQ 
vector. Routines in the time.c module have been written for you, to interface with the timer. The IRQ 
interrupt is invoked 100 times per second by setting the appropriate value in the set_timer() routine in 
time.c: 

void 
set_timer()  
{ 
    PUT32(TIMER_Load, 10);  // time in millisecs 

    PUT32(Enable_IRQs_1, 64); 
    PUT32(Enable_Basic_IRQs, 0x1); 
    enable_irq(); 
    return;  
} 

If you put a smaller/larger value in the first line, the IRQ interrupt will fire less/more frequently. Feel free 
to set the kernel’s interrupt frequency to different values to see what happens — for instance, how fast can 
you interrupt the core before it becomes noticeable? You can speed the timer up faster than 1/ms, but it 
requires you to comment out the line that does the “1000x downsample.” At some point, the frequency of 
interrupts will overwhelm the processor. 

Implement Context Switch
There are two “user applications” to switch between: 

• run_shell() in z_shell.c — This is the shell that you have been given for Project 3, except that the 
while() loop has been edited so that it simply prints out the prompt, waits about a second, and 
skips back to the top of the loop. This means that the shell simply prints something to the screen 
at a regular time interval. We will override that at the end. 

• do_blinker() in z_blinker.c — This application blinks the LED in a repeating 1, 2, 3, 4, 1, 2, 3, 4 
pattern (it blinks once, then twice, then three times, etc.).  

Thus we have two tasks that should run in USR mode and which perform regular I/O, but to non-
conflicting devices (one is to the LED, the other is to the UART). Your task is to write code that will swap 
between two different apps. Knowing that the code above works, this should be straightforward, as the 
code above is a context-switch code. It is a bit more involved, however, as you must perform the following 
functions: 

• Every interrupt, you must save the currently executing context and restore the other 

• You must start up the second thread (do_blinker) if it is not already running 
If your code is implemented correctly, it should look like both threads are running “simultaneously.” If 
you slow the timer interrupt down in time.c, for instance once every second or even every ten seconds, 
you should see only one app working at a time. If you speed the timer up, you should see problems as the 
cost of handling the interrupts grows significant. 
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The Problem: Long-Latency Input
Once you have the project working, you are done writing code, but there is one more step to perform, so 
that you understand a big problem that operating systems face. Comment out the code in z_shell.c that 
loops back to the top of the while() loop without doing any input. What happens? The reason why it 
happens can be seen in uart.c … when you ask the kernel to READ the UART on your behalf, it 
ultimately calls uart_recv() — which blocks. A short section of the uart.c module is shown below: 

//------------------------------------------------------------------------  
unsigned int uart_recv ( void ) 
{ 
    while(1)  
    { 
        if(GET32(AUX_MU_LSR_REG)&0x01) break; 
    } 
    return(GET32(AUX_MU_IO_REG)&0xFF); 
} 
//------------------------------------------------------------------------  
unsigned int uart_recvcheck ( void ) 
{ 
    if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
    return(0); 
} 
//------------------------------------------------------------------------  
unsigned int uart_sendcheck ( void ) 
{ 
    if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
    return(0); 
} 
//------------------------------------------------------------------------  
void uart_send ( unsigned int c ) 
{ 
    while(1)  
    { 
        if(GET32(AUX_MU_LSR_REG)&0x20) break; 
    } 
    PUT32(AUX_MU_IO_REG,c); 
} 

The first thing that uart_send() and uart_recv() do is hang indefinitely. 
The IRQ interrupt is set up not to interrupt the kernel in SVC mode, so the entire time this code is 
blocking, the timer interrupt is being ignored. 
Next project, we will address that. Start thinking now about how you would address it. 

Build It, Load It, Run It
Once you have it working, show us.
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