
ENEE 447: Operating Systems — Project 4 (4%)

Purpose
In this project you will implement context switching on the Raspberry Pi, using perhaps the simplest
possible scheduling algorithm: on every timer tick you will switch back and forth between two processes
(i.e., if thread 0 is running, change to thread 1; if thread 1 is running, change to thread 0). The two
threads will be in the same address space, so we will not have to worry about saving and restoring
anything other than the register file contents (for instance, once we have virtual memory running, you
will have to save special control registers related to that). Context switching obviously represents the
underpinning of all multitasking and multiprocessing and is thus one of the operating system’s most
fundamental and powerful mechanisms. From this point, you will be able to implement much more
sophisticated scheduling algorithms and juggle any number of simultaneous threads.

Context Switch in ARM
Recall the register-file arrangement in the ARM architecture:

The IRQ vector shares a number of registers with code running in USR mode: r0–r12 and the program
counter are common, while the IRQ vector runs in a mode that has its own stack pointer (r13) and link
register (r14).

Interrupt handling 11

ARM Processor

Figure 1.7 Register organization

On the ARM processor there are 17 registers always available in any mode and 18
registers in a privileged mode. Each mode has a set of extra registers called banked
registers (see figure 1.7). Banked registers are swapped in, whenever a mode
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into
SPSR_irq. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked
register is denoted by _irq or _fiq, so for example the banked register for r13 in IRQ
mode is shown as r13_irq.

Note: This is particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14/LR

r12

r13/SP

r15/PC

cpsr

-

r0

r1

r9_fiq

r2

r3

r4

r5

r6

r7

r8_fiq

r10_fiq

r11_fiq

r14_fiq

r12_fiq

r13_fiq

r15/PC

-

spsr_fiq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_irq

r12

r13_irq

r15/PC

-

spsr_irq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_svc

r12

r13_svc

r15/PC

-

spsr_svc

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_undef

r12

r13_undef

r15/PC

-

spsr_undef

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_abort

r12

r13_abort

r15/PC

-

spsr_abort

User/System FIQ IRQ SVC Undef Abort

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �1

Project 4: Preemptive Context Switch (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned: Tuesday, Mar 5; Due: Sunday, Mar 17

ENEE 447: Operating Systems — Project 4 (4%)

Among many other things, what this means is that, assuming you have a register-save area of sufficient
size, located at threadSave, then the following code will save all of the registers visible in USR and SYS
modes:

save_r13_irq: .word 0

irq_nop: 
 // save the registers 
 str r13, save_r13_irq @ save the IRQ stack pointer  
 ldr r13, =threadSave @ load the IRQ stack pointer with address of TCB  
 add r13, r13, #56 @ jump to middle of TCB for store up and store down  
 stmia sp, {sp, lr}^ @ store USR stack pointer & link register, upwards  
 push {r0-r12, lr} @ store USR regs 0-12, IRQ link register, downwards

 @ regs saved, we can now destroy stuff

 // 
 // clear timer interrupt (we get here from timer) 
 // 
 bl clear_timer_interrupt

 @ clobber the user stack - simulates effect of another thread running  
 @ clobber the user stack - simulates effect of another thread running  
 @ clobber the user stack - simulates effect of another thread running  
 mov r2, # SYS_mode 
 msr cpsr_c, r2 
 ldr r0,badval 
 ldr r1,badval 
 ldr r2,badval 
 ldr r3,badval 
 ldr r4,badval 
 ldr r5,badval 
 ldr r6,badval 
 ldr r7,badval 
 ldr r8,badval 
 ldr r9,badval 
 ldr r10,badval 
 ldr r11,badval 
 ldr r12,badval 
 ldr r13,badval 
 ldr r14,badval 
 mov r2, # IRQ_mode 
 msr cpsr_c, r2 
 @ clobber the user stack - simulates effect of another thread running  
 @ clobber the user stack - simulates effect of another thread running  
 @ clobber the user stack - simulates effect of another thread running

 // reset the timer 
 bl set_timer

 // restore the registers 
 ldr r13, =threadSave @ load the IRQ stack pointer with address of TCB  
 pop {r0-r12, lr} @ load USR regs 0-12 and IRQ link register, upwards  
 ldmia sp, {sp, lr}^ @ load USR stack pointer & link register, downwards  
 nop @ evidently it's a good idea to put NOP after LDMIA  
 ldr r13, save_r13_irq @ restore the IRQ stack pointer from way above  
 subs pc, lr, #4 @ return from exception

This code does several things. First, it saves the stack pointer sp/r13 into a known location. Then, it saves
the thread context on an array of words pointed to by threadSave: this is done by first jumping into the
middle of the array, storing two values upward, and then storing 14 values downwards. Once those values
are saved, it is free to destroy the register file contents (which simulates a context switch to another
thread). The handler changes to SYS mode, which shares the same register file as USR mode, and it loads
a garbage value into registers 0–14. Then it jumps back into the IRQ handler’s mode, restores the
previously saved state, and exits.
This code is given to you in the project source directory for p4. The entire project, as presented to you,
compiles and runs, with the exception of the code you are currently writing for Project 3. With it, you
will build the penultimate feature of The Simplest Possible Operating System™ — the preemptive context
switch.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �2

ENEE 447: Operating Systems — Project 4 (4%)

The Simplest Possible Operating System™
As said before, at its simplest, an OS is nothing more than a collection of vectors: it does nothing unless it
is responding to interrupts. This is what we will be building in Projects 3, 4, and 5. Project 3
implemented a system-call facility and provided an extremely rudimentary shell that runs in user mode —
but still within the kernel proper, for now. Project 4 adds to that the preemptive context switch and a
rudimentary scheduler: switch processes every time quantum. The code for saving and restoring state is
provided above, and your job is to use this to create the scheduler and context-switch mechanism.
The scheduler will be invoked through a timer interrupt that comes into the kernel through the IRQ
vector. Routines in the time.c module have been written for you, to interface with the timer. The IRQ
interrupt is invoked 100 times per second by setting the appropriate value in the set_timer() routine in
time.c:

void 
set_timer()  
{ 
 PUT32(TIMER_Load, 10); // time in millisecs

 PUT32(Enable_IRQs_1, 64); 
 PUT32(Enable_Basic_IRQs, 0x1); 
 enable_irq(); 
 return;  
}

If you put a smaller/larger value in the first line, the IRQ interrupt will fire less/more frequently. Feel free
to set the kernel’s interrupt frequency to different values to see what happens — for instance, how fast can
you interrupt the core before it becomes noticeable? You can speed the timer up faster than 1/ms, but it
requires you to comment out the line that does the “1000x downsample.” At some point, the frequency of
interrupts will overwhelm the processor.

Implement Context Switch
There are two “user applications” to switch between:

• run_shell() in z_shell.c — This is the shell that you have been given for Project 3, except that the
while() loop has been edited so that it simply prints out the prompt, waits about a second, and
skips back to the top of the loop. This means that the shell simply prints something to the screen
at a regular time interval. We will override that at the end.

• do_blinker() in z_blinker.c — This application blinks the LED in a repeating 1, 2, 3, 4, 1, 2, 3, 4
pattern (it blinks once, then twice, then three times, etc.).

Thus we have two tasks that should run in USR mode and which perform regular I/O, but to non-
conflicting devices (one is to the LED, the other is to the UART). Your task is to write code that will swap
between two different apps. Knowing that the code above works, this should be straightforward, as the
code above is a context-switch code. It is a bit more involved, however, as you must perform the following
functions:

• Every interrupt, you must save the currently executing context and restore the other

• You must start up the second thread (do_blinker) if it is not already running
If your code is implemented correctly, it should look like both threads are running “simultaneously.” If
you slow the timer interrupt down in time.c, for instance once every second or even every ten seconds,
you should see only one app working at a time. If you speed the timer up, you should see problems as the
cost of handling the interrupts grows significant.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �3

ENEE 447: Operating Systems — Project 4 (4%)

The Problem: Long-Latency Input
Once you have the project working, you are done writing code, but there is one more step to perform, so
that you understand a big problem that operating systems face. Comment out the code in z_shell.c that
loops back to the top of the while() loop without doing any input. What happens? The reason why it
happens can be seen in uart.c … when you ask the kernel to READ the UART on your behalf, it
ultimately calls uart_recv() — which blocks. A short section of the uart.c module is shown below:

//--  
unsigned int uart_recv (void) 
{ 
 while(1)  
 { 
 if(GET32(AUX_MU_LSR_REG)&0x01) break; 
 } 
 return(GET32(AUX_MU_IO_REG)&0xFF); 
} 
//--  
unsigned int uart_recvcheck (void) 
{ 
 if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
 return(0); 
} 
//--  
unsigned int uart_sendcheck (void) 
{ 
 if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
 return(0); 
} 
//--  
void uart_send (unsigned int c) 
{ 
 while(1)  
 { 
 if(GET32(AUX_MU_LSR_REG)&0x20) break; 
 } 
 PUT32(AUX_MU_IO_REG,c); 
}

The first thing that uart_send() and uart_recv() do is hang indefinitely.
The IRQ interrupt is set up not to interrupt the kernel in SVC mode, so the entire time this code is
blocking, the timer interrupt is being ignored.
Next project, we will address that. Start thinking now about how you would address it.

Build It, Load It, Run It
Once you have it working, show us.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �4

